The goal of this course is to introduce the main concepts and challenges of quantum computing, a new set of technologies and techniques that promise to solve hard computational problems.

 

a quantum circuit

The development of animals, starting from a single cell to produce a fully formed organism, is a fascinating process. Its study is currently advancing at a rapid pace thanks to combined experimental and theoretical progress, yet many fundamental questions remain to be answered.

This course will address the fundamental theoretical concepts underlying the self-organization of multicellular systems, from gene regulation to the mechanics of active biological materials. The course will be based on various concepts from theoretical physics: dynamical systems, soft and active matter, the mechanics of continuous media, numerical modeling, etc.

This course deals with transfers in complex fluids, which are ubiquitous processes in everyday life and industrial applications, as well as in geological or biological systems. Different types of transfers will be examined : first, drying and dissolution and, in a second part, wetting of a solid surface. The specificities of the drying of complex fluids will be highlighted, and associated phenomena such as glass transition, Marangoni effects, etc. will be described quantitatively in the light of recent literature. The mechanisms of the reverse process of dissolution will also be detailed. Then, starting from the description of the wetting of a solid by a simple liquid, we will see how introducing complexity in this multiphase problem (viscoelasticity, surface-volume exchanges, intermediate characteristic length scale, activity…) modifies the contact between media. The related challenges posed in industrial applications will also be detailed.

 

The lectures offer a statistical-physics perspective on active matter, which encompasses systems whose fundamental constituents dissipate energy to exert forces on the environment. This out-of-equilibrium microscopic drive endows active systems with properties unmatched in passive ones. From molecular motors to bacteria and animals, active agents are found at all scales in nature. Over the past twenty years, physicists and chemists have also engineered synthetic active systems in the lab, by motorizing particles whose sizes range from nanometers to centimeters, hence paving the way towards the engineering of active materials.

The lectures will rely on the modern tools of statistical mechanics, from stochastic calculus to field theoretical methods, using both theoretical models and experimental systems to illustrate the rich physics of active matter.