Quantum Mechanics

Lieu
ENS-PSL
Automne - Hiver
Niveau Master 1 3 ECTS - En anglais
Master 1
Enseignant(s) Yanko Todorov ( ENS-PSL )
Contact

Yanko Todorov

yanko.todorov@phys.ens.fr


Mame Diallo

Gestionnaire du Master Quantum Engineering

mame.diallo@phys.ens.fr


Secrétariat de l’enseignement 

enseignement@phys.ens.fr


 

Yanko Todorov

Syllabus

1. Basic Quantum Mechanical Concepts

  • Wavefunction and probabilistic interpretation, interference, position and momentum measurement and representation.
  • Stability of the atom, wavefunctions and energy levels in hard wall potentials (through standing wave condition)
  • Introduction to Hilbert space; measurement as projection; introduction to Schrodinger equation

2. Dirac formalism

  • Observables, Hilbert space, Probability amplitude (bra, ket product), position & momentum operators, Hamiltonian, Commutator and Heisenberg uncertainty relation, The postulates of quantum mechanics, Evolution operator, Time evolution of variables, Schrödinger and Heisenberg picture, Tensor product of Hilbert spaces, The Einstein- Podolsky-Rosen “paradox”.

3. Some 1D problems in Quantum Mechanics

  • Conservation law for probability current, Transmission, Three “classic” 1D problems in Quantum Mechanics (step, barrier, well), Numerical resolution of 1D Schrödinger equation 
  • The Quantum Harmonic Oscillator: Hamiltonian, spectrum, ladder operators, eigenstates, coherent states, Translation operator.

4. Spin and Two-level systems

  •  Stern and Gerlach experiment, Pauli matrices & their properties, Spin in an arbitrary direction, Spin and 3D rotation, Coherent control of a spin, Spin as a Q-bit: single bit quantum gates, Two Q-bits quantum gates, Intro: Spatial rotations and angular momentum operator

5. Open systems and density matrix

  • Case study: quantum well coupled to a continuum, Wigner-Weisskopf approach & derivations of the Fermi’s golden rule
  • Density matrix operator: Definition, properties, examples, application, elementary introduction to Lindblad equation
Prerequisites

None

Evaluation

Written exam (2 h)