Mathematical Methods for Quantum Engineering

Lieu
ENS-PSL
Automne - Hiver
Niveau Master 1 2 ECTS - En anglais
Master 1
Contact

Alexandru Petrescu

alexandru.petrescu@mines-paristech.fr

Pierre Rouchon

pierre.rouchon@mines-paristech.fr


Mame Diallo

Gestionnaire du Master Quantum Engineering

mame.diallo@phys.ens.fr


Secrétariat de l’enseignement 

enseignement@phys.ens.fr


 

Alexandru Petrescu & Pierre Rouchon

Syllabus

1. Basic concepts of linear algebra leading to a rigorous formulation of the postulates of quantum mechanics

2. Schrödinger, Heisenberg and Dirac pictures
3. Introduction to the density operator and the von Neumann equation

4. Simple systems such as the spin 1/2, the harmonic oscillator, and the Jaynes-Cummings model;

5. Time-independent and time-dependent perturbation theory

6. Introduction to three specific mathematical methods illustrated on physical examples encountered in classical/quantum engineering:

i) Single frequency averaging and rotating wave approximation (phase-looked loop, resonant control of a qubit, Kapitsa pendulum and Paul traps)
ii) Euler/Lagrange and Hamilton equations with the classical/quantum correspondence (1D/2D pendulum, LC and Josephson electrical circuits)
iii) Stability of dynamical systems and feedback (damped pendulum, Lyapunov function, transfer functions of first/second-order systems, PID-regulator/cascade, slow/fast systems)

Prerequisites

None

Evaluation

Written (2 h)