Doctoral School ED564 : «Physique en Île-de-France»

École Doctorale 564 Physique en Île-de-France is run by Paris Sciences et Lettres (PSL Research University) and co-accredited by Pierre et Marie Curie (UPMC), Sorbonne Paris Cité (USPC) and Paris-Saclay (UPSaclay) universities.

Its scientific field essentially covers the physics of fundamental interactions, the quantum physics of dilute or condensed matter, statistical physics, the physics of soft or biological matter, as well as fundamental aspects of optics, acoustics and hydrodynamics.

Its scientific positioning is that of fundamental, theoretical and experimental physics, and the applications that naturally follow from this.

More than 700 doctoral students carry out their thesis work within the Physics Doctoral School in île de France, which groups together some 40 laboratories spread across Paris Centre and Paris Sud, and more than 800 thesis supervisors.

The aim of this lecture is to provide a description of quantum transport in disordered systems, with an emphasis on important phenomena like weak localization, Anderson localization and the Anderson metal-insulator transition. During the lecture, a number of important theoretical tools needed to describe quantum particle scattering in the presence of spatial disorder will be introduced in a pedagogical fashion, such as the Green's function technique, diagrammatic approaches to weak localization and transfer matrices. The lectures will be also illustrated by experimental examples and tutorials, especially taken from the physics of quantum gases and  condensed matter.

  • This lecture aims at the description of the interaction between quantum matter in its simplest form, an atom, and an electromagnetic field. A semi-classical approach, where the field is classical, is first considered, including relaxation of the atom. We then study the quantization of the electromagnetic field and its relaxation, before its interaction with an atom is described in a full quantum model.

« La chétive pécore, s’enfla si bien qu’elle creva ». « Je plie, et ne romps pas ». While taking inspiration from the living, La Fontaine noticed examples of organisms – frog and reed – that deform strongly, sometimes beyond unrecoverable limits.

The development of animals, starting from a single cell to produce a fully formed organism, is a fascinating process. Its study is currently advancing at a rapid pace thanks to combined experimental and theoretical progress, with yet many fundamental questions remaining to be understood. 

This course will address the fundamental theoretical concepts underlying the self-organization of multicellular systems, from genetic regulation to the mechanics of active biological materials. The course will be based on various concepts of theoretical physics: dynamical systems, soft an active matter, mechanics of continuous media, numerical modeling, etc.

The Advanced Biophysics Course is a lecture course that covers modern concepts in experimental and theoretical physics of living systems, in the broadest sense.

Image
bacteria

Image N. Desprat (LPENS)

Objectives : the lecture will present a broad overview of fluid mechanics at all scales, from bacterias to stars.

Physics is an experimental science. Its progress is due to a constant exchange between theory and experiments. Experimental skills are thus a requirement.

The main goal of this course is to cover the physics of light-matter interaction in the context of quantum devices, and materials at the nanoscale. This UE features both theoretical aspects in lectures and tutorials - possibly based on the analysis and discussion of recent research papers - and experimental projects (12h) on research grade experiments at the end of the semester.