Ce cours vise à décrire l'interaction entre la matière quantique dans sa forme la plus simple, un atome, et un champ électromagnétique. Une approche semi-classique, où le champ est classique, est d'abord considérée, en incluant la relaxation de l'atome. Nous procédons ensuite à la quantification du champ électromagnétique et décrivons sa relaxation, avant que son interaction avec un atome ne soit étudiée dans un modèle quantique complet.

 

Soft Matter refers to diverse materials such as polymers, colloids, granular materials or liquid crystals, that display complex features, as showing fluid or solid like properties depending on the external solicitation, anisotropic mechanical properties or the appearance of yield stresses

The Advanced Biophysics Course is a lecture course that covers modern concepts in experimental and theoretical physics of living systems, in the broadest sense.

Image
bacteria

Image N. Desprat (LPENS)

Objectives : the lecture will present a broad overview of fluid mechanics at all scales, from bacterias to stars.

Physics is an experimental science. Its progress is due to a constant exchange between theory and experiments. Experimental skills are thus a requirement.

 

 

 

 

Modern physics is characterized by an increasing complexity of systems under investigation, in domains as diverse as condensed matter, astrophysics, biophysics, etc. Due to the growing availability of experimental data, data-driven modelling is emerging as a powerful way to model those systems. The objective of the course is to provide the theoretical concepts and practical tools necessary to understand and to use these approaches.

The goal of this course is to introduce the main methods in electronic structure theory, which is at the heart of our present capability of understanding, predicting, and engineering materials properties based on accurate in-silico solutions of the many-body Schrödinger equation for electrons and their coupling with the lattice/structural degrees of freedom. 

The main goal of this course is to present the different regimes of electronic transport in conductors and how quantum mechanical effects affect their resistance or conductance.

The main goal of this course is to cover the physics of light-matter interaction in the context of quantum devices, and materials at the nanoscale. This UE features both theoretical aspects in lectures and tutorials - possibly based on the analysis and discussion of recent research papers - and experimental projects (12h) on research grade experiments at the end of the semester. 

The main goals of this course are to cover the fundamentals of the electronic properties of solids, and to provide the conceptual basis of selected modern experimental techniques used to investigate such properties.