Topological theory in condensed matter

Diplome(s)
Lieu
Université Paris Cité
Printemps- Eté
Niveau Master 2 3 ECTS - En anglais
Cours en option pour le parcours de Matière Condensée / Physique Quantique M2
Enseignant(s) Christophe MORA ( Université de Paris Cité ) Leonardo MAZZA ( Université Paris-Saclay )
Contact - Secrétariat de l’enseignement

The main goal of this course is to provide an introduction to the subject of topological phenomena in condensed-matter. 

After an introduction to the mathematical tools, we will focus on electronic models and discuss how topology plays a major role in shaping their physical properties. 

We will then move to the quantum Hall effect and discuss its spectacular phenomenology, deeply rooted into topological notions, from robust edge states to fractionalised excitations, such as Majorana fermions.

Syllabus

PART I : Topological theory of free fermions

  • Introduction : Berry phase, Dirac monopole, Aharanov-Bohm effect, Foucault pendulum
  • Fermionic models I : SSH model, graphene
  • Fermionic models II : Haldane model (Chern insulator), Weyl semimetals, topological insulators
  • Adiabatic pumps à la Thouless
  • Integer quantum Hall effect

PART II : Topological order and anyons

  • Topological order and anyons : the toric code
  • Fractional quantum Hall effect, Laughlin wavefunction 
  • Entanglement in many-body quantum systems
Prerequisites
Evaluation

Written