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Introduction

In these lectures, our goal is to describe in a microscopic way the behaviour of what we can study in soft
matter physics. Soft matter physics is a field of physics interested in the understanding of phenomena with a
typical energy of the order of magnitude of kT (where k is the Boltzmann constant and T the temperature):
thermal fluctuation and entropy will play a huge role in the description of such phenomena. As a consequence,
noise is a key feature in the understanding of soft matter physics. In addition, the systems described here
will be very dense, so we will have to take into account a huge number of components in our system. Thus,
the introduction of the tools of statistical physics is necessary to obtain an understandable description of
the collective behaviour of these very dense systems.
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Chapter 1

Interactions

In this chapter, we propose a description of the interactions between particles (e.g. colloids) in an electrolye
(e.g. Na+, Cl− in water). At the microscopic scale, the interactions are dominated by electromagnetism and
quantum effects.

In water, we have three main types of interaction (where V is the potential of interaction between the
particles, and r is the distance which separates them):

1. Van der Waals interactions: attractive interactions between fluctuating dipoles: V ∼ −1/r6.

2. direct electrostatic interactions, which directly follow Coulomb’s law: V ∼ qq′/r.

3. hydrogen bonding: direct attractive interaction between oxygen and hydrogen in water, which tends to
“align” molecules of water in the solvent (in competition with entropy). This is the interaction which
gives their tetrahydral structure to water crystals (ice).

In this chapter, we will focus on the first two interactions: Van der Waals and electrostatic interactions.

1.1 Dipolar interactions and Van der Waals

1.1.1 Quick reminder on dipoles

A globally neutral cloud of charges may be described by its electric dipole p =
∑
j qjrj where qj and rj are

the charges and positions of the punctual charges. If two clouds which are globally neutral (i.e.
∑
j qj = 0

for each of them) interact, then the potential of interaction between them is dominated by the contribution
of their dipoles, following:

V (r) =
1

4πε0

1

r3

(
p1 · p2 −

3(p1 · r)(p2 · r)

r2

)
And the energy of interaction between an electric dipole and an electric field is given by E = −p ·E.

Very often, electric dipoles may be induced by their surrounding electric field E. For a linear response
(‖E‖ → 0), we define the electric susceptibility α so that: 〈p〉 = αE.

Let us compute this susceptibility for a permanent dipole.

1.1.2 Electric susceptibility of a permanent dipole

We will here compute the value of the susceptibility for an electric dipole freely rotating in the presence of
a given electric field. The length of the electric dipole is fixed to ‖p‖ = p.
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Let choose our basis vectors so that E is aligned to the z axis. We
will call θ the angle between E and p. In the spherical coordinates, θ is
then the polar angle, and the description of p is completed with its fixes
length p and its azimuthal angle ϕ.

By symmetry of rotation around the vertical axis, we have immedi-
ately that 〈px〉 = 〈py〉 = 0. As a consequence, we are just interested here
in 〈pz〉. To compute 〈pz〉, we will use a Boltzmann-weighted distribution

(where each configuration is weighted by exp
(
−E(config.)

kBT

)
. Means are

then obtained by integrating among all possible configurations of the sys-
tem). Each configuration is given here by (θ, ϕ) or equivalently by the
solid angle Ω(θ, ϕ). Integrating over all Ω possible gives:

〈pz〉 = 〈p cos θ〉 =

∫
dΩ p cos θ exp

(
Ep cos θ
kT

)
∫

dΩ exp
(
Ep cos θ
kT

)
where dΩ = sin θdθdϕ.
Integrating over ϕ in both members of the fraction gives geometric terms that simplify (since nothing

depends on ϕ in the integral). Then, calling z = −EpkT and changing variables in the integral (u = cos θ)
yields:

〈pz〉 = p

∫ 1

−1
duu exp(−zu)∫ 1

−1
du exp(−zu)

= p×
(
− ∂

∂z
log

(∫ 1

−1

du exp(−zu)

))
= p×

(
− ∂

∂z
log

(
2 sinh z

z

))
The susceptibility is defined for a small electric field, so for z → 0. Then: log (sinh z/z) ≈ log

(
1 + z2/6 + ...

)
≈

z2/6. As a consequence:

〈pz〉 = −p× 2

6
z =

p2

3kT
E = αE

We finally obtain:

α =
p2

3kT

Remark. A cloud of punctual charges may not have a permanent dipole. But, in presence of an external
electric field, the creation of an electric dipole may be induced. This induced permanent dipole has a quantum
origin (it is caused by the perturbation of the orbitals of particles by an external electric field), and the electric
susceptibility of such a dipole is α = 4πε0a

3
0 where a0 is the characteristic size of an atom.

1.1.3 Qualitative understanding of V ∼ −1/r6 in Van der Waals interactions

Let us consider two dipoles, and let us discuss the interaction between them. The first dipole creates the
following electric field:

E1(r) =
1

4πε0

1

r3

(
3(p1 · r)r

r2
− p1

)
And it can be approximated by E1(r) ∼ −p1/r

3.
Using this external electric field to compute 〈p2〉, we obtain: 〈p2〉 ∼ −α2p1/r

3. This electric dipole
creates in return an electric field, the value of which being: E2 ∼ −p2/r

3 ∼ α2p1/r
6.

Finally, the Van der Waals interaction potential between the two dipoles is:

VV dW = −〈p1 ·E2〉 ∼ −α2〈‖p1‖2〉/r6 ∼ 1 − α1α2/r
6

1α = p2

3kT
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Remark.

1. This Van der Waals interaction, and especially its exponent 6 in −1/r6 are universal. They do not
depend on the kind of particles considered, nor of the solvent.

2. This interaction is attractive. But it can be made repulsive if the surrounding medium is well chosen
and one of the dipoles is induced. Indeed, the true expression of α for an induced dipole depends on
the relative permittivities of the particles and of the solvent: α = 4πa3

0ε
ε−ε
ε+2ε where ε is the permittivity

of the solvent, and ε is the permittivity of the particles. It can be experimentally interesting to finely
tune the permittivity of the solvant in order to destroy the Van der Waals interaction.

3. There are retarded Van der Waals interactions, which are caused by the delay induced by the finite
speed of propagation of electromagnetism waves. But it is very long-distance effect, and we will always
neglect it. For a retarded Van der Waals interaction, the potential is V ∼ −1/r7.

1.2 Van der Waals interaction between surfaces

We’ve just quantitatively explained Van der Waals interactions. These interactions are attractive and may
lead to interaction between surfaces. The understanding of this phenomenon is crucial to us, who want to
study soft matter physics, which is often intersted in surfaces. In fact, because of Van der Waals interaction,
two surfaces tend to attract each other. The calculation of the effect of Van der Waals interaction on two
surfaces is left as an exercice to the reader, but the main steps of it are:

1. Start from one atom in front of a surface, and integrate over all the interactions between it and each
atom of the other surface.

2. Sum for all the atoms of the surface the interaction potential obtained before for just one atom.

The result is:

W (D) = − A

12πD2

where D is the distance between the two surfaces, and A is called the
Hamacker constant and depends on the geometries and electric properties
of the two surfaces. In particular: A ∝ α1α2ρ1ρ2 where ρ1 and ρ2 are the
densities of the two surfaces.

Remark.

1. Order of magnitude: A ∼ 10−21 − 10−20 J. In particular, for two quartz surfaces separated by water:
A = 6.3× 10−21 J.

2. There exists an exact computation of the Hamacker constant, which has been proposed by Lifschitz. If
two surfaces of permittivities ε1 and ε2 are separated by a medium of permittivity ε3, we can obtain:

A ≈ 3
4kT

(
ε1−ε3
ε1+ε3

)(
ε2−ε3
ε2+ε3

)
+ 3h

4π

∫∞
ν1
dν
(
ε1(iν)−ε3(iν)
ε1(iν)+ε3(iν)

)(
ε2(iν)−ε3(iν)
ε2(iν)+ε3(iν)

)
where ν1 = 2πkT/h.

1.3 Electrostatic interactions

As we’ve just seen, because of Van der Waals interactions, two surfaces are attracted one towards the other.
This is a huge issue for anyone who wants to prepare a suspension of particles (e.g. of colloids), because these
particles will aggregate because of Van der Waals interactions. “Hopefully”, another kind of interaction may
be repulsive enough to maintain the suspension non-aggregated: the electrostatic interaction, and what we
call the double layer phenomenon. This section is devoted to the understanding of this phenomenon.

1.3.1 What is the surface charge ?
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An electrolyte is by definition a conductive phase. Here, electrolytes will be conduc-
tive liquids, and may be ionic solutions (e.g. Na+, Cl− in water) or ionic liquids (e.g.
salts in fusion). Here, we will focus on ionic solutions, and more specifically on salts
dissolved in water.

When a solid plate is submerged in an electrolyte, it may become charged on its
surface. Indeed, the ions in the electrolyte (and also water itself) have the ability to
stabilize charges, and any charge-creating dissociation of the molecule constituing the
plate can be favoured by entropic forces. For example, in SiO2 plates, the molecules
of SiOH in contact with water will leave their proton and become SiO− and H+,
H+ being stabilized by anions and by water itself (this huge stabilization of ions by
water solutions is included in the value of the relative electric permittivity in water,
which is equal to 80).

As a consequence, solid plates may become charged on surface. We will call
σ their surface charge (i.e. their charge by unit area). As an order of magnitude, for SiO2 in water:
σ ∼ 10− 50 mC/m2.

1.3.2 Electrostatic lengths

As we will see later, many typical lengths may arise when studying electrostatics. Let us give some of them,
that we will encounter later in our calculations.

Bjerrum length

This length is obtained by equating the interaction potential between two unitary charges and the thermal
energy kT :

lB =
e2

4πεkT

In water at room temperature: lB = 7Å.

Debye length

In an electrolyte, ions may be surrounded by conter-ions (we say that the ions
are dressed). The Debye length gives a typical radius to such clouds (or dresses):

Ncounter−ions× e2

4πελD
∼ kT (which gives the competition between entropy and elec-

trostatic forces that respectively disperse and condense such clouds). Ncounter−ions ∼
ρsλ

3
D where ρs is the concentration of the salt in the electrolyte.

λ2
D ∝

1

lBρs

As an order of magnitude, if ρs ∼ 1 M, then λD ∼ 3Å.

Gouy-Chapman length

lGC =
1

2π σe lB

Dukhin length

lDk =
σ/e

ρs

Remark. There are many other lengthscales. The existence of that many lengthscales makes the study of
electrostatic interactions in electrolytes very challenging, and the first to really construct a good stable and
basic understanding od this subject are Verweg and Overbeck in the 1940’s.
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1.3.3 Poisson-Boltzmann (PB) theory

The PB theory aims to describe the distribution of charges (and therefore the electric potential) in a (mono-
valent) ionic solution with an infinitely large charge plate of charge surface σ.

The PB theory is mainly the coupling between two equations:

Poisson equation

∆V = −e
ε

(ρ+ − ρ−)

where ρ+ and ρ− are the concentrations of the cations and anions.

Boltzmann equilibrium

ρ± = ρse
∓ eVkT

These two equations combined, we have:

∆V = −e
ε
ρs(e

− eVkT − e+ eV
kT )

Introducing the dimensionless potential φ = eV
kT (with kT

e ∼ 25 mV) and κD = 1/λD, we obtain the
Poisson-Boltzmann equation:

∆φ = κ2
D sinhφ

Remark. A cleaner way to describe this system is to see it as the neighbourhood of the plate connected to
a reservoir of salt concentration ρs. Using the equilibrium of the electro-chemical potential (of a perfect gas)
in the neighbourhood of the plate and in the reservoir yields the Boltzmann equilibrium:

µ± = kT log
(
ρ±λ

3
T

)
± eV = µreservoir = kT log

(
ρsλ

3
T

)
where λT is the thermal de Broglie wavelength.

1.3.4 Boundary conditions

The boundary conditions that have to be used are the Gauss boundary conditions of the electric field:
σ
ε = E · n|surface.

With E = −∇V , and callind the axis normal to the surface the z axis: −∂V∂z surface = σ
ε .

And finally:

−∂φ
∂z

(z = 0) =
eσ

εkT
= 4πlB

σ

e
=

2

lGC

1.3.5 Debye-Hückel theory

The Debye-Hückel theory is the PB theory which is linearized for φ � 1 i.e. for V � kT
e ∼ 25 mV. With

addition of the symmetries of the problem giving ∆φ = ∂2φ
∂z2 = d2φ

dz2 , the linearized PB equation is:

∂2φ

∂z2
≈ κ2

Dφ

Avoiding divergence of the solution and respecting the boundary conditions, we can integrate:

V (z) =
σλD
ε
e−κDz

And:

ρ±(z) = ρse
∓ eV (z)

kT ≈ ρs
(

1∓ e

kT
V (z)

)
≈ ρs

(
1∓ eσ

εkT
λDe

−κDz
)

= ρs

(
1∓ 2λD

lGC
e−κDz

)
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Surface capacitance

From the boundary conditions on the plate (that we just used to integrate the dif-
ferential equation), we have found σ = CV0 where C = ε/λD. This means that the
system near the plate behaves like a capacitance. From this point of view, we can
see the system as a charged plate with a layer of counter-charges in front of it at a
distance λD. We call this the electric double layer.

We can develop this description by showing that the free energy per unit area of
the system includes a term behaving like the energy of a capacitance (V0 dσ being
the contribution of electrostatics in the free energy):

dF = −S dT + µ+ dN+ + µ− dN− + V0 dσ

Integrating the electrostatic contribution:

Fes(σ) = Fes(σ = 0) +
σ2

2C

Remark. σ2

2C looks like the energy of a capacitance but it is here a free energy. This means that all possible

contributions are taken into account into this σ2

2C , including entropic contributions.

1.3.6 Full 1D solution of PB equation

By arguments of symmetry, we can restrict ourselves to a 1D potential (V (r) = V (z), z being the axis normal
to the charged surface).The PB equation is then:

d2φ

dz2
= κ2

D sinhφ

We take the first integral of this differential equation by multiplying by dφ
dz and by integrating. Asking

for φ and dφ
dz decaying toward 0 at infinity yields:

1

2

(
dφ

dz

)2

= κ2
D(coshφ− 1)

Using a separation of variables:

dφ√
coshφ− 1

=
√

2κD dz

Finally, integrating yields:

10
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φ = −2 log

[
1 + γe−κDz

1− γe−κDz

]
where: γ2 + 2 lGCλD − 1 = 0.

Remark.

1. For z � λD, φ ∼ −4γe−κDz.

2. For a large surface charge (lGC � λD), we have γ ∼ 1 and for z � λD:

V ∼ − 4kT
e e−κDz ∼ (−100 mV)e−κDz. Thus, the potential induced by a large enough surface charge

does not depend on the caracterictic of this surface charge.

1.3.7 Interaction between charged surfaces

Now, we will consider two parallel similarly charged surfaces, separated by a distance D. We want to find
an expression for the force between the two charged surfaces due to the electrostatics interactions between
them. Of course, we will use the result from the previous section.

Action of an electric potential on one plate

We will first consider the action of a given electric potential on one plate. To do so, let us consider the
global force balance on a cylinder of fluid of section S and height h, normal to the plate, and touching with
one of its surfaces the plate. Let’s call the surface of the cylinder in contact with the plate S0, and the
opposite surface of the cylinder S1. F0 and F1 are the forces acting on S0 and S1, and F0 and F1 are their
projections on the z axis. We are only interested in the balance of forces along the z axis, so we will forget
about the forces acting on the cylinder perpendicularly to the z axis (and we are supposing that the fluid is
non-viscous and does not transmit momentum through the lateral walls of the cylinder).

First of all, we have to remark that F0 is the opposite of the force acting on the plate through the surface
S0 (this is juste an application of the third law of Newton (action-reaction)). Then, the balance of our
cylinder of fluid along the z axis gives F0 + F1 = 0. Finally, F1 is equal to the force acting on the plate
through S0, and, with the hypotheses made above, this equality does not depend on the position of S1 along
the z axis.

Now, F1 = F is made of two contributions: the pression (which we will obtain supposing our fluid behaves
like a perfect gas) and the electrostatics:

F

S
= −p(z) +

∫
dz ρcEz

where: p(z) = (ρ+(z) + ρ−(z))kT , ρc = −εd2V
dz2 , and Ez = −dV

dz .

We have then: ρcEz = ε
2

d
dz

[(
dV
dz

)2]
. And:

F (z)

S
= −p(z) +

∫ z

0

dz
ε

2

d

dz

[(
dV

dz

)2
]

= −p(z) +
ε

2

(
dV

dz

)2

11
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We call the Maxwell stress tensor Π(z) = −F (z)
S .2

This tensor is in fact constant along the z axis: dΠ
dz = 0 ⇐⇒ −dp

dz + ρcE = 0 ⇐⇒ ∆Φ = κ2
D sinhφ,

which is of course true here, since we are considering a solution of PB equation.

Interaction between the two plates

We consider now the two plates, but we still use our reasoning with the balance of forces on the left-most
plate. The action of the second plate will be contained in the calculation of the Maxwell stress tensor: the
force per unit area exercised by the second plate on the first is equal to −Π. Since Π is constant along the
z axis, we will compute its value on a particular point: z = D/2 which is on the plane of symmetry of our
system. The symmetry of our problem states that V (z−D/2) is an even function. As a consequence, dV

dz is
odd and vanishes at z = D/2. Then:

F

S
= −Π = −p(z) +

ε

2

(
dV

dz

)2

= −p(z) = −kT (ρ+ + ρ−)(z = D/2)

Now, we need to give (ρ+ + ρ−)(z = D/2), but it is not that easy. The PB
equation is non linear and therefore it is not trivial to obtain the solution for φ whe
there are two plates.

Here, we will then make an approximation: we will suppose that we can act as
if the PB equation was linear (for that, we suppose that φ is small enough). We
say with this approximation that the solution of PB for two plates is the sum of the
solution of PB for each plate.

As a consequence, here, with D/2� λD: φ ∼ −8πγe−κDD/2.
And, finally:

F

S
= −2kTρs coshφ = −P0 − 64kTρsγ

2e−κDD

for φ� 1, where P0 = 2kTρs is the osmotic pressure due tu the bulk concentration.

Remark.

1. Fes = −64kTρsγ
2e−κDD < 0: the interaction between the two plates due to the electrostatic interactions

is a repulsive interaction.

2. The contribution of kTρs is a perfect gas contribution, and highlights the fact that this repulsion is due
to the entropic repulsion of the particles between the two plates.

3. For weak charged surfaces, γ ∝ σ and then Fes ∝ σ2.

1.4 DLVO (Derjaguin Landau Verwey Overbeek) theory

The DLVO theory explains the aggregation of dispersions in electrolytes. By combining the effects of the
Van der Waals attraction and the electrostatic repulsion due to the electric double layer effect, one can
understand how particles in an electrolyte aggregate or not, depending on the electrolyte’s and particles’
characteristics.

The interaction between two particles can be locally understood as the interaction between two surfaces.
From the previous part, we now have the dependance of the interaction between the particles on their
distance from eachother. The total free energie in that case is:

U(D) = − A

12πD2
+ U0e

−κDD

A stable state for the system has to minimize of free energy. From this, we can distinguish two main
cases:

2Read the book of Jackson on electromagnetism to learn more about this tensor
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Chapter 2

From capillarity to Density Functional
Theory (DFT)

2.1 Quick reminder

Creating a surface between two phases has a cost of energy. We call the cost of free energy per unit area the
surface tension or surface energy. We write it γij where i and j refer to the two phases in contact at the
interface (in general, L for liquid, V for vapour and S for solid).

As an order of magnitude: γ
(water)
LV ∼ 70 mN m−1.

As you may have noticed, the unity of γ is the same as for Force
Length or for Pressure× Length.

This is a good way to remember that one effect of surface tension is to create forces on lines of interface,
normal to the line and parallel to the interface, which are equal to γl where l is the length of the line of
interface considered. Another effect of surface tension is to create a discontinuity of pressure across curved
interfaces: pext − pint = γC, where C is the curvature of the interface. This is called the Laplace pressure.

Finally, the contact angle of a liquid drop on a solid in a gas atmosphere is given by the Young angle θ:

γLV cos θ = γSV − γSL

2.2 Capillarity induced phase transitions

2.2.1 Liquid-vapour phase transition

There is an equilibrium between the liquid and the gas phases where the chemical potentials of both phases
are equal. This leads to an equation (µliquid(T, P ) = µgas(T, P ) = µsat(T )), which, when solved, gives a
relation between the temperature T and the pressure P . With this relation, one can build a phase transition
diagram, where a line P = Psat(T ) gives the equilibrium of the two phases.

2.2.2 Effect of capillarity

Now we consider a more complex situation. We take a vapour phase, with T and P so that µ(T, P ) 6=
µsat(T, P ). In such a system, we put a parous material, whose pores have a typical diameter H. We want to
know the state of the fluid inside the pores depending on H. Will it stay gaseous of will it become liquid ?

14
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Qualitative description

The vapour is more stable in the bulk (this is our hypothesis), therefore, the free energy of the vapour is
lower than the liquid’s: fV × V < fl × V where fi is the free energy of the phase i by unit volume.

But if the surface are wetting (γSV > γSL), the free energy due to the interface is γSL×Area < γSV ×Area.
There is a competition between a bulk effect and a surface effect. Thus, a typical length scale Hc will

emerge from the proper calculation of the free energy. From what we’ve already said, when H > Hc, the
bulk effect will dominate and there will be vapour in the pores. On the contraty, if H < Hc, the surface
effect will dominate and the pores will be filled by liquid: it is the capillary condensation.

Proper thermodynamics

We will work in the grand canonical ensemble (the thermodynamical variables are then µ, V and T ). The
system that we will work on is the porous material, which can exchange particles with the bulk, that we will
see as a reservoir of particles with fixed µ and T .

The grand potential of such system is:

Ω = F − µN = −pV + γA

whereV is the volume of the pores in the porous material, and A their area.
To simplify the calculation, we will now only consider one pore, which is a gap between two parallel

surfaces of area A. Here, the surface of the pore is 2A.
We have to compare two situations: the pore is either filled with vapour (with it grand potential written

as ΩV ), either filled with liquid (Ωl): Ωi = −piV + 2γSiA.
We have then:

∆Ω = Ωl − ΩV = −(pL − pV )HA+ 2(γSL − γSV )A = A(∆pH − 2γLV cos θ)

where θ is given by Young law.
If ∆Ω > 0, then the vapour is favoured, else it is the liquid that is favoured. And Hc is obtained for

∆Ω(Hc) = 0. We have then:

Hc =
2γLV cos θ

pV − pL
which is called the Kelvin length.

Kelvin length expressed in RH (Relative Humidity)

We define RH as: RH(T ) =
p
(water)
V

psat(T ) , and we want to express Hc as a function of RH.

First, we want to express RH as a function of ∆µ = µsat−µ. We write µ = µL = µV since in both cases
the liquid of gaseous phase is in equilibrium with the reservoir at fixed chemical potential µ.

As we assimilate our vapour to a perfect gas, we have: µV = µ = kT log
(
ρV λ

3
T

)
= kT log

(
pV
kT λ

3
T

)
(where

λT is the thermal de Broglie wavelength).
As a consequence:

∆µ = µsat − µ = kT log
psat
pV

= kT log
(
RH−1

)
Now, we want to express pV − pL as a function of ∆µ. To do so, we use the Gibbs-Duheim relationship:

N dµ = V dp− S dT

Considering that the liquid we may obtain is incompressible: ρL = N/V is constant (and independant of
pL), with Gibbs-Duheim at fixed T (dT = 0): dp = ρL dµ. Integrating yields: pL − psat = −ρL∆µ.

Finally, considering that pi − psat ∝ ρi and ρV � ρV , we have: pV � pL, and finally:
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pV − pL ≈ −pL = ρL∆µ

Finally:

Hc =
2γLV cos θ

ρL∆µ
=

2γLV cos θ

ρLkT log
(
RH−1

)
Remark.

1. If H < Hc, we can have a phase transition even though µ < µsat: here, confinement has induced a
shift of transition.

2. The value of Hc could have also been computed by considering a system where both liquid and gaseous
phases are in equilibrium and form a meniscus. This situation only occurs when H = Hc, when both
phases have the same free energy. With the expression of the Laplace pressure at the meniscus, the
value of Hc can easily be found.

If we weigh such a porous medium in a reservoir of gas, we would
obtain a very sharp sigmoid-like masse = f(pression) curve. The point
of inflexion of this curve is then p∗ such that p∗ = psat − 2γ cos θ

H , where
H is the size of the pores in the porous material. If their a distribution
of pore sizes in the material, then the curve masse = f(pression) will
be a superposition of the curve obtained for a unique pore size. Such a
curve can then be a way to measure experimentally the distribution of
pore sizes in a given porous material.

Remark. The hysteresis that can be seen in the curve is due to the nature of the transition induced by
capillary condensation. Even though the system might be in a less favorable state than it minimum of
energy, there is an energy barrier that has to be crossed to go to the favored state. This energy barrier delays
the transition and is the cause of the hysteresis that can be observed.
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Orders of magnitude

The Kelvin length for water in our atmosphere is about 1 nm. Typically:

Hc ∼
1 nm

log RH−1

And, if we compute the ∆p induced by the capillary bridge (the filling of pores by liquid), we obtain:
∆p ∼ 1× 103 bar which is very huge. That’s why such even small in size objects may have a macroscopic
effect.

An effect of capillary condensation: adhesion

The capillary bridges that may be created by capillary condensation act like a glue. In fact, they change the
Amontons-Coulomb law by adding an additional force in the slip threshold:

FT ≤ (FN + Fcap)

And for a porous medium, Fcap may depend on the “age” of the medium. Indeed, the filling of pores in
the material may take some time, and the longer we wait before pushing the material, the more it has been
filled by water, and the larger Fcap will be. The growth of Fcap is generally logarithmic with respect to the
time of wait, because of the large distribution of pore sizes.

2.3 Density Functional Theory

Now, we will try to better describe an interface between liquid and vapour.

2.3.1 Thermodynamics

We could write an hamiltonian for the system, derive from it the partition function:

ZN =
1

N !

1

h3N

∫
dp1 · · · dpN

∫
dr1 · · · dr1 exp

(
− 1

kT
H ({ri}, {pi})

)
and then obtain the free energy F (N,V, T ) = −kT logZN in the canonical ensemble.
But, most of times, we work with fixed density ρ = N/V and then the thermodynamic variables are

related, which is a problem. In fact, the grand canonical ensemble (µ, V, T) is better suited to describe
systems with fixed densities. (Furthermore, free energy is not the best to describe equivalence between
different phases).

We can then introduce the grand potential Ω(µ, V, T ) = F − µN = −p(µ, T )V . We will also introduce
the intensive ω = Ω/V : ω(ρ;µ, T ) = f(ρ, T )− µρ where f = F/V . In ω(ρ;µ, T ), ρ is not a thermodynamic
variable, it has to be seen as a constraint, whose value at equilibrium minimizes ω (∂ρω(ρeq) = 0). This is
a way to say ∂ρf(ρeq) = µ: the chemical potential of the system is equal at equilibrium to the one of the
reservoir.

First example with a perfect gas

ZN =
1

N !

V N

λ3N
T

with λT =
√

h2

2πmkT .

f =
F

V
= kT

[
ρ log

(
ρλ3

T

)
− ρ
]

And then:

17
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ω(ρ) = kT
[
ρ log

(
ρλ3

T

)
− ρ
]
− µρ

And the equilibrium finally gives:

µ = kT log(ρλ3
T )

And now with a Van der Waals fluid

The Van der Waals model takes into account two main things:

1. The fluid’s molecules interact via Van der Waals attraction.

2. There is a hard core repulsion at short distance.

With such a model, the contribution to the free energy per unit volume of the interactions between
particles is given by − 1

2a(T )ρ2. The free energy per unit volume is then:

f = kT

[
ρ log

(
ρλ3

T

1− bρ

)
− ρ
]
− 1

2
a(T )ρ2

A good model close to critical point is then:

∆ω = ω − ωsat = A(ρ− ρL)2(ρ− ρV )2

2.3.2 Introducing the heterogeneity

Now, the fluid density with wary with space. As a conquence, Ω({ρ}) is a functional of ρ(r). If we suppose
that the variations of ρ are small (the gradients are negligeable), we can write Ω as an expansion of ρ and
its derivatives.

If we make the local density approximation (LDA), we totally neglect the gradients, and write:

Ω({ρ}) =

∫
drω(ρ(r))

But here, we want to take into account the cost in energy of density gradients. To do so, we add the first
term compatible with the symmetries of our system (isotropy, etc...), which is |∇ρ|2.1 We then have:

Ω({ρ}) =

∫
drω(ρ(r)) +

1

2
m|∇ρ|2

We orientate our x axis so that ρ(−∞) = ρL and ρ(+∞) = ρV . The minimization through the Euler-
Lagrange equation yields (in a 1D system):

−md2ρ

dx2
+

dω

dρ
= 0

1For a deeper description of symmetry arguments, see Chaikin & Lubensky.
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Taking the first integral:

−1

2
m

(
dρ

dx

)2

+ ∆ω = cst

With the boundary conditions (∆ω = 0 and dρ
dx = 0 at ±∞), we have cst = 0 and then, asking for ρ to

be decreasing:

dρ

dx
= −

√
2

m
∆ω(ρ)

A separation of variables gives: ∫
dρ

2
m∆ω(ρ)

= −x+ cst

And finally, using ∆ω = A(ρ− ρL)2(ρ− ρV )2 and ρV < ρ < ρL, we obtain:

ρ(x) =
ρV + ρLe

− x−x0ξ

1 + e−
x−x0
ξ

where ξ = 1√
2A
m ∆ρ

.

Remark. When T → Tc, ρL → ρv and ξ → ∞: the characteristic length of the interface diverges when
approaching criticity.t

2.4 Cahn-Hilliard theory of wetting transition

2.4.1 Experimental results and introduction of some concepts

The wetting properties of a liquid on a substrate depend on its temperature. Indeed, many experiments
have shown a transition from a partial wetting (characterized by its Young’s angle) to a total wetting (when
a drop of the liquid entirely spreads when deposited on the solid substrate). To characterize this wetting
property, one can look at the thin wetting film at the vicinity of a drop of liquid initially partially wetting
on a solid substrate. When varying the temperature of the system, a transition occurs and the initially very
thin film of liquid (of a molecular size) becomes huge (∼ 10− 100 nm).

The experiments have exhibited two types of behaviour:
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1. A first order one, when the transition is discontinuous, and when the the thcikness of the film remains
finite.

2. A second order one, when the transition from a thin to a thick film of liquid is continuous. When
T → TW , the thickness of the film diverges.

Our goal is to describe and to distinguish these two types of transition. We will again use a square
gradient theory (i.e. a theory where |∇ρ|2 appears in the free energy (in the following, we will call Ω the
free energy, even though this is in fact the grand potential. Ω = F − µN .).

Finally, as we want to describe the wetting of a liquid on a substrate, we will have to consider the
spreading parameter : S = γSV − (γSL + γLV ). If S > 0, then γSV > (γSL + γLV ) and the existence of layer
of liquid between the solid and the vapour is favoured: the system is wetting. Inversely, if S < 0, the system
is just partially wetting: the liquid forms a drop whose contact angle is determined by Young’s law.

2.4.2 Thermodynamics

The total free energy of the system is given by the free energy of the fluid (liquid or gas), that we have
described in the previous part, and the free energy of the solid. Calling ρS the density of the fluid directly
in contact with the solid substrate, we can make a Taylor expansion of the free energy per unit area of the

solid substrate with respect to ρS : ∆ΩS/A = γ
(0)
S − γ

(1)
S ρS + 1

2γ
(2)
S ρ2

S , where the second order has been kept

to ensure a saturation of ρS when minimizing the free energy, and where γ
(i)
S > 0.

Then, the total free energy per unit area is (with z being the axis normal to the surface of the solid
substrate):

∆ΩTOT ({ρ}, ρS)

A
= γ

(0)
S − γ

(1)
S ρS +

1

2
γ

(2)
S ρ2

S +

∫
dz

[
1

2
m|∇ρ|2 + ∆ω(ρ)

]
Minimizing with respect to {ρ} yields the same equations as in the previous part (in 1D):

−md2ρ

dz2
+

dω

dρ
= 0

And the first integral gives:

dρ = −dz

√
2

m
∆ω(ρ)

In 1D, we then have:
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1

2
m|∇ρ|2 + ∆ω(ρ) =

m

2
× 2

m
∆ω(ρ) + ∆ω(ρ) = 2∆ω(ρ)

And finally, changing variables in the integral yields:∫
dz

[
1

2
m|∇ρ|2 + ∆ω(ρ)

]
=

∫
dρ
√

2m∆ω(ρ)

We can now write the total free energy per unit area with ρS and ρbulk = limz→∞ ρ(z):

∆ΩTOT

A
= γ

(0)
S − γ

(1)
S ρS +

1

2
γ

(2)
S ρ2

S +

∫ ρS

ρbulk

dρ
√

2m∆ω(ρ)

Minimizing with respect to ρS finally yields:√
2m∆ω(ρS) = γ

(1)
S − γ

(2)
S ρS

2.4.3 Graphical solution for a Van der Waals fluid

Let’s recall the simple equation we used in the previsous section for ∆ω:

∆ω = A(ρ− ρV )2(ρ− ρL)2

With such a model, the equation for ρS is given by:

√
2mA|ρS − ρV ||ρS − ρL| = γ

(1)
S − γ

(2)
S ρS

Put graphically, this means that ρS is found by looking for the intersection between a straight line and
a juxtaposition of parabolas.

Now we have to distinguish two cases: is the slope γ
(2)
S high enough for the straight line to cross more

than once the parabolas? We are interested in the region where ρS ≈ ρL (the region of the transition from

a thin layer of liquid to a thick one), so we want to compare γ
(2)
S to

√
2mA(ρL − ρV ).

In the following, we will consider that γ
(2)
S is fixed (it represents the hard-core repulsion of particles

which does not reaaly depend on temperature) and that γ
(1)
S increases when T decreases (when the entropy

decreases, the attraction effect increases).

First case: γ
(2)
S >

√
2mA∆ρ
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Close to ρL, the straight line will intersect only at one point the parabolas. There is no choice for the
system: only one solution is possible for ρS . When T decreases, the straight line is translated to the higher
densities, and ρS → ρL. We define TW the temperature of wetting so that ρS(TW ) = ρL.

This case corresponds to the second order transition: the change of ρS is continuous, there is absolutely
no discontinuity in this transition. Now, to understand the divergence of the thickness of the layer of liquid
in contact to the substrate, one has to recall the expression of ρ(z) obtained in the previous section:

ρ(z) =
ρV + ρLe

− z−z0ξ

1 + e−
z−z0
ξ

Here, ξ = 1√
2A
m ∆ρ

and is rather constant: T is varying close to TW in our description, and is far enough

from criticity so that ∆ρ(T ) ≈ cst.

In our expression for ρ(z), there is still one parameter that has to be fixed: z0. To fix it one has to recall
that we impose a density ρS on the contact with the solid substrate, at z = 0. In that case, z0 is fixed so
that ρ(z = 0) = ρS . Thus, varying ρS is just shifting our density profile sigmoid so that ρ(z = 0) = ρS . We
have:

z0 = ξ log

(
ρS − ρV
ρL − ρS

)
≈ 1√

2A
m ∆ρ

log

(
∆ρ

ρL − ρS

)
and z0 is in fact the typical thickness of the layer of liquid. We recover as shown by the experiments the

divergence of the thickness:

lim
ρS→ρL

z0 = +∞

Second case: γ
(2)
S <

√
2mA∆ρ

Here, the slope of the straight line is low enough for it to intersect three times the parabolas. In that case,

there are two stable solutions for ρS . The system has to choose between these two values of ρS : ρ
(V )
S being

close to ρV and ρ
(L)
S being close to ρL (with ρ

(L)
S > ρL).

Remark. The solution ρ(z) = ρV +ρLe
− z−z0

ξ

1+e
− z−z0

ξ

has been obtained for ρV < ρ < ρL. When ρ > ρL, one has to

redo the calculation with:
∫

dρ
2
m∆ω(ρ)

= −x+ cst and
√

∆ω =
√
A(ρ− ρL)(ρ− ρV ).

This choice of value for ρS will depend one what is the more favoured between a solid-liquid-vapour and a
solid-vapour interfaces. It will then depend on the value of the spreading parameter S = γSV − (γSL+γLV ).
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To compute it, we first need to obtain the equations giving γij . For that, one has to recall the definition
of the surface tension being the free energy per unit area caused by interfaces. We’ve already written it,
without calling it the surface tension:

γLV =

∫ ρL

ρV

dρ
√

2m∆ω

γSV =

∫ ρ
(V )
S

ρV

dρ
√

2m∆ω −
∫ ρ

(V )
S

ρ0

dρ
(
γ

(1)
S − γ

(2)
S ρ

)
γSL =

∫ ρ
(L)
S

ρL

dρ
√

2m∆ω −
∫ ρ

(L)
S

ρ0

dρ
(
γ

(1)
S − γ

(2)
S ρ

)
where ρ0 is chosen so that:

∫ ρ(L)
S

ρ0
dρ
(
γ

(1)
S − γ

(2)
S ρ

)
= γ

(0)
S − γ

(1)
S ρS + 1

2γ
(2)
S ρ2

S .

Finally:

S = γSV − (γSL + γLV ) =

∫ ρ
(L)
S

ρ
(V )
S

dρ
(
γ

(1)
S − γ

(2)
S ρ−

√
2m∆ω(ρ)

)
Graphically, this corresponds to saying that S = S1 − S2 where the areas S1 and S2 are defined in the

previous figure

Here, TW is defined differently: for T = TW , S1 = S2. If we still assume that γ
(1)
S increases when T

decreases, we can see graphically, that:

• If T > TW , S1 < S2 and then S < 0: a thick liquid film is not favoured and the system is partially

wetting. We also have ρS = ρ
(V )
S .

• If T < TW , S1 > S2 and then S > 0: a thick liquid film is favoured and the system is totally wetting.

We also have ρS = ρ
(L)
S .

In this case, when T crosses TW , the system jumps instantaneously from a partially wetting to a totally
wetting state. ρS is a discontinuous function of T . This transition is a first order transition.

2.5 Dynamics: Time-Dependent Density Functional Theory (TD-
DFT)

For the moment, we have only described the equilibrium state of a given system. But, here, we want to
discuss the dynamics of its trajectory towards its equilibrium. If we perturb the system, how will it go back
to its equilibrium?
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Again, we will not do a microscopic description of our system (it is far too difficult), but we will use a
coarse-grain (or mesoscopic) description.

2.5.1 Phenomenological laws

Supported by experiments, phenomonological laws have been proposed to describe such dynamics. The
following laws will focus on the density dynamics.

Non-conserved dynamics

∂ρ

∂t
= −Γ

δΩ

δρ

This is just a way to minimize Ω with respect to ρ by the steepest descent. This is very similar to the
proportionnality between the velocity and the viscous friction in mechanics.

These dynamics are called “non-conserved” because the total number of particles
∫

dr ρ is not conservec
with such dynamics.

Conserved dynamics

∂ρ

∂t
= λ∇2 δΩ

δρ

To derive this law, we take the conservation law: ∂ρ
∂t = −∇ · J where J is a current of particles given by

the phenomenological law: J = −λ∇µ where µ = δΩ
δρ is the chemical potential of the system.

2.5.2 Application to the DFT theory

We have in the DFT theory including square gradients:

Ω({ρ}) =

∫
dr

[
1

2
m|∇ρ|2 + ω(ρ(r))

]
We then have:

δΩ

δρ
= −m∇2ρ+

dω

dρ

For conserved dynamics:

∂ρ

∂t
= λ∇2

[
−m∇2ρ+

dω

dρ

]
Now, we want to study the relaxation of fluctuations around the equilibrium. We then write ρ as

ρ = ρ0 + δρ where ρ0 is the homogeneous equilibrium density for the system.
The previous equation becomes now, linearized with δρ� ρ0:

∂δρ

∂t
= λ∇2

[
−m∇2δρ+ ω′′(ρ0)δρ

]
Remark. ω′′(ρ0) is related to the compressibility of the fluid. If χT = − 1

V
∂V
∂P |T , then: ω′′(ρ0) = 1

ρ20χT

(obtained thanks to the Gibbs Duheim relation ρdµ = dp and to ω′′ = dµ
dρ ). The thermodynamic stability

implies that χT ≥ 0, then ω is a complex function of ρ.

To study this equation on δρ, we go in Fourier space, with the conventions:

δρ̂(q, t) =

∫
dr δρ(r, t)eiq·r

δρ(r, t) =

∫
dq

(2π)3
δρ̂(q, t)e−iq·r
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In Fourier space, the differention equation on δρ becomes:

∂δρ̂

∂t
= −λ

[
mq4 + ω′′(ρ0)q2

]
δρ̂

Integrating this yields, with ν(q) = λ
[
mq4 + ω′′(ρ0)q2

]
:

δρ̂(q, t) = δρ̂(q, t = 0)e−ν(q)t

We recover from this that for ρ to be stable, we need ω′′(ρ) > 0.
From this, we can, if we want to, recover ρ(r, t) in real space.

Application: spinodal decomposition

Spinodal decomposition is a mechanism for the rapid unmixing of a mixture of two phases. Our Fourier
description of the dynamics of δρ gives us to have a qualitative understanding on how these two phases
unmix.

To illustrate the process, let’s imagine that we first have a system at a temperature such that ω′′(ρ0) > 0.
For the moment, for all q, ν(q) > 0 and all modes are stable for the system.

Now we modify the temperature so that ω′′(ρ0) < 0. Now, νq = λ
[
mq4 + ω′′(ρ0)q2

]
will be negative

for small values of q. In particular, ν(q) has a minimum at q∗ =
√
−ω′′ρ02m which corresponds to the most

unstable mode of the system.
The consequence of this is the exponential growth of the unstable modes, which is the fastest for the

mode q∗. In this spinodal decomposition, we will see the appearance of two domains corresponding to the
two phases unmixing, the unmixing having a typical lengthscale λ∗ ∼ 1/q∗.
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Chapter 3

Fluctuations and entropic interactions

In the following we will study the statistical aspects of the parameters describing the interfaces developped
in the previous chapters. As before, we will denote 〈X〉 the mean value of a random variable X.

As a consequence to the central limit theorem, we will encounter many times the normal probability
distribution:

P(x) =
1√

2πσ2
exp

(
− x2

2σ2

)
which yields 〈x〉 = 0 and 〈x2〉 = σ2.
In physics, this normal distribution is very often given by the Boltzmann weight. For a given configuration

{Xi} of the system:

P({Xi}) ∝ exp

(
−H({Xi})

kT

)
where H is the hamiltonian of the considered system.
A general property of such a Boltzmann distribution is the equipartition theorem. This theorem essen-

tially states:

1

2
α〈X2〉 =

1

2
kT

if X is described by a Boltzmann distribution and 1
2α〈X

2〉 is an independent contribution in the hamil-
tonian of the system (H = H0 + 1

2α〈X
2〉 where H0 does not depend on X).

This result is obtained by integrating by part the expression of 〈X2〉 (the contribution of H0 simplifies
itself by being factorized out of the integrals on dx):

〈X2〉 =

∫
dxx2 exp

(
− 1

2
αx2

kT

)
∫

dx exp
(
− 1

2
αx2

kT

) =

[
−kTα x exp

(
− 1

2
αx2

kT

)]+∞
−∞

+ kT
α

∫
dx exp

(
− 1

2
αx2

kT

)
∫

dx exp
(
− 1

2
αx2

kT

) =
kT

α

As a consequence of this equipartition theorem, for each quadratic degree of freedom 1
2αX

2 in the
hamiltonian of a system, there is a contribution of 1

2kT in the mean energy of this system.

3.1 Fluctuation of liquid-vapour interfaces

3.1.1 Introduction

We want to the study the amplitude of the fluctuations of a liqui-vapour interface. Thus, we consider a
system composed of vapour and of liquid, divided along the z = 0 plane by an interface given by its height
h(x, y, t). To study this system, the strategy is first to obtain its free energy. Then, the probability of a

given interface configuration {h} will be: P({h}) ∝ exp
(
−F({h})

kT

)
.
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Here, we suppose that µL = µV : the two phases coexist at equilibrium.
Therefore, there is no bulk cost to the overall quantities of liquid or vapour:
the only cost comes from the interface. As a consequence, by definition
of the surface tension, we immediately obtain: F = γLV ×Area. And the

area is given by: Area =
∫

dx dy

√
1 + |∇h|2.

Taking a reference F0 for h = cst and supposing |∇h|2 � 1, we finally
have:

∆F = F − F0 =
1

2
γLV

∫
dxdy |∇h|2

We will also add the effect of gravity on the interface. To do so, we will neglect the density of the vapour,
and call ρ the density of the liquid. With this, we now have:

∆F =

∫
dxdy

[
1

2
γLV |∇h|2 +

1

2
ρgh2

]
With F we will be able to compute 〈h2〉(x, y). We will then compute (∆h)2 = 1

L2

∫
dxdy 〈h2〉(x, y),

which is the mean fluctuation of h averaged on the whole surface.

3.1.2 Fourier analysis

We decompose h on its Fourier modes as: hq =
∫

drh(r)eiq·r. We obtain thanks to the Parseval theorem:

∆F =

∫
dq

(2π)2

1

2

(
γLV q

2 + ρg
)
|hq|2

If the box containing our system is of size L, then q is discretized as q = 2π
L (nêx+mêy) where (n,m) ∈ Z2.

This trick allows us to see ∆F as a sum of independent quadratic terms:

∆F =
1

L2

∑
q

1

2

(
γLV q

2 + ρg
)
|hq|2

Thanks to the equipartition theorem, for each q, we have:

〈|hq|2〉 =
kTL2

γLV q2 + ρg

We have, thanks again to Parseval’s theorem:

(∆h)2 =
1

L2

∫
dxdy 〈h2〉(x, y) =

1

L2

∫
dq

(2π)2
〈|hq|2〉

Injecting the value obtained for 〈|hq|2〉:

(∆h)2 =
1

L2

∫
dq

(2π)2

kTL2

γLV q2 + ρg
=

kT

(2π)2ρg

∫
2πq dq

1 + (lcq)2

with lc =
√

γLV
ρg . Then, with the changing of variables u = (lcq)

2:

(∆h)2 =
kT

4πρg

1

l2c

∫
du

1 + u
=

kT

4πγLV
[log(1 + u)]

umax
0

umax is a natural cut-off that occurs because q is limited by qmax = 2π
a where a is a characteristic

microscopic lengthscale. This is a way to take into account a posteriori the microscopic degrees of freedom.
Finally, we have:

(∆h)2 =
kT

4πγLV
log

(
1 +

(
2π
lc
a

)2
)
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Remark.

1. If g → 0, lc → +∞, and umax = lcqmax → +∞ is no longer a good cut-off and the cut-off is now given
by the size L of the box.

2. Close to the critical point, we have γLV → 0 as γLV ∝ (ρL − ρV )3:

γLV =

∫ ρL

ρV

dρ
√

2m∆ω =
√

2mA

∫ ρL

ρV

dρ (ρL − ρ)(ρ− ρV ) =
√

2mA(ρL − ρV )3

∫ 1

0

dxx(1− x)

Close to Tc, we then have (∆h)2 ∝ (ρL − ρV )−3: the interface becomes huge, until it reaches the size
of the box.

3.2 Fluctuation of membranes

3.2.1 Introduction

Unlike for interfaces, membranes are a continuous material, so there are free energy costs to what corresponds
to the ondulations and deformations of the membrane1:

• for the stretching of the membrane: ∆Fstretching = 1
2κ
(
A−A0

A0

)2

A0. But, here, we will consider that

κ is so large that A ≈ A0.

• for the bending of the membrane: ∆Fbending =
∫

dr
(

1
2
B
R2 + 1

2
BG
R1R2

)
. Where 1

R = 1
R1

+ 1
R2

is the

local curvature of the membrane, and 1
R1R2

its gaussian curvature. The gaussian curvature can be
non-negligeable, but we will nonetheless forget it, in order not to be disturbed by non-linearities. For
graphene, B ∼ 1 eV.

With our simplifications, we have:

∆F =

∫
dr

1

2

B

R2

R is the local radius of curvature of h. For a small enough curvature, we can write h in a parabolic

approximation: h(x, y) = h0 + 1
2
x2+y2

R . In this approximation, we have: 1
R = ∇2h.

And finally:

∆F =

∫
dr

1

2
B(∇2h)2

3.2.2 Fourier analysis

We conduct our Fourier analysis just as before. With Parseval’s theorem:

P({h}) ∝ exp

(
− 1

kT

∫
dr

1

2
B(∇2h)2

)
= exp

(
− 1

kT

∫
dq

(2π)2

1

2
Bq4|hq|2

)
Then, we invoke the finitude of the system (it is in a box of size L) to discretize q:

P({h}) ∝
∏
q

exp

(
− Bq4

2L2kT
|hq|2

)
Then the equipartition theorem gives:

1see Helfrich for a detailed description of the elasticity of cell membranes.
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〈|hq|2〉 =
kTL2

Bq4

Finally, with Parseval’s theorem again:

(∆h)2 =
1

L2

∫
dx dy 〈h2〉(x, y) =

1

L2

∫
dq

(2π)2
〈|hq|2〉 =

kT

2πB

∫
q dq

q4
=

kT

4πB

[
1

q2

]+∞

qmin

Choosing the natural cut-off qmin = 2π
L :

(∆h)2 =
kT

16π3B
L2

Remark. ∆h ∝ L means that the fluctuations scale like the size of the system. One cannot neglect such
fluctuations by choosing a bigger system, unlike with the fluctuations of the liquid-vapour interface.

As a numerical application, let’s consider a graphene membrane, for which B ∼ 1 eV at ambient tem-
perature (kT ∼ 1

40eV ): ∆h/L ∼ 10−2. This is not that small: the fluctuations of the membranes are a
phenomenon that can easily be seen.

3.3 Density fluctuations

In the DFT, we have looked a thermodynamical potential (the grand potential or the free energy, depending
on the considered ensemble). Here, we will call this thermodynamical potential the free energy and write it
F , but keep in mind that if we work in the grand canonical ensemble, F is in fact the grand potential.

Previously, in Chapter 2, we were just looking for the equilibrium density, defined as δF
δρ = 0. Now, we

want to study the fluctuations around the equilibrium homogeneous density ρ0, and to do so, we will use
exactly the same approach as in the previous sections. We write our fluctuations as δρ(r) = ρ(r)− ρ0, and
we suppose them small before ρ0. Finally, we will also f(ρ) ≡ F/V .

In the square gradient description, we have then:

F({ρ}) =

∫
dr

[
1

2
m|∇ρ|2 + f(ρ)

]
Recalling that ρ0 is a minimum for f(ρ), we can approximate f(ρ) around ρ0: f(ρ) ≈ f0 + f ′′(ρ0)δρ.
Hence:

∆F({ρ}) = F − F0 =

∫
dr

[
1

2
m|∇δρ|2 + f ′′(ρ0)δρ

]
As before, we use the Parseval’s theorem and the Fourier transform of δρ, and with the equipartition

theorem, we obtain:

〈|δρ̂k|2〉 =
kTV

mk2 + f ′′(ρ0)

Usually, people define here the structure factor: S(k) = 1
N 〈|δρ̂k|

2〉.

Remark. Be carefully, the expression obtained here is only true for small k. Indeed, the gradient approxi-
mation only holds for big length scales (hence for small k). We can not use our results to study the structure
of our system at a molecular scale.

In our expression for 〈|δρ̂k|2〉, a natural lengthscale appears, which is ζ2 = m/f ′′(ρ0). Recalling that
d2f
dρ2 = dµ

dρ = 1
ρ

dp
dρ (thanks to Gibbs-Duheim’s relation) and that χT = 1

ρ dp
dρ

, we have:

ζ2 = mρ2
0χT

This yields an important result: at critical point, since we have dp
dρ → 0 and then χT → +∞:
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lim
T→Tc

ζ2 = +∞

This is the cause of the milky aspect that has any solution near critical point: as soon as ζ is close to
the wavelength of visible light, the solution becomes strongly diffusing.

Finally, to compute the typical size of the fluctuations of the number of particles 〈∆N2〉, one has to
remember that ∆N =

∫
rδρ(r), which is exactly the value of δρ̂0 =

∫
rδρ(r) exp(i0 · r).

Finally, recalling that ρ0 = N/V :

〈∆N2〉 =
V kT

f ′′(ρ0)
= NkTρ0χT

Hence, we recover the law of large numbers: 〈∆N2〉 ∝ N . And we have: limT→Tc〈∆N2〉 = +∞.

Typical S(k).

3.4 Entropic forces

As said in the introduction, kT is the central characteristic energy in the system we consider. Hence, the
entropy is a key feature of soft matter.

When we constrain a system, we reduce the accessible volume in its phase space: the entropy is therefore
lower in a constrained system than in a system at equilibrium. As a consequence, the system will act against
the constraint in order to reach equilibrium. In many such cases, the effect of entropy is then a conversion
of entropic terms into mechanical forces.

3.4.1 Osmosis

Osmosis is an example where a difference of concentrations drives a flow
accross a semipermeable membrane. Let’s consider a system which is a
mixture of two species: the solute and the solvent. The recipient con-
taining this mixture is separated by a semipermeable membrane, letting
the solvent going through it, but not the solute. Finally, we write C1 and
C2 the concentrations of the solute at each side of the membrane. We
suppose C2 > C1 at equilibrium for the system.
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Qualitative understanding

Qualitatively, the system is “unhappy” with such a situation: in the more concentrated part of the system,
the solute would like to be dilute. It can be done by taking a bit of solvent from the less concentrated part
of the system, which needs less solvent to be happy. But, the solvent is already at its prefer density in each
part of the system (thanks to the permeable membrane that let it go towards its density equilibrium) and it
does not want to flow through the membrane to “help” the solute. This unwillingness of the solvent to flow
manifests as a pressure opposing the unwanted flow.

Of course, this was very qualitative, and the compromise found in satisfying both solvent and solute is
given by the equality:

µ
(1)
solvent(C1, p1) = µ

(2)
solvent(C2, p2)

By solving it, we can obtain the Van’t Hoff law:

∆Π = kT∆C

where ∆Π = p2 − p1 and ∆C = C2 − C1.

Alternative calculation

Another way to obtain the Van’t Hoff law is to see the membrane as an energy barrier for the solute,
creating a potential U(x) with Umax � kT . Hence, the concentration of the solute at each side (1 or 2) of
the membrane is at thermal equilibrium:

Ci(x) = C∞i e
−U(x)

kT

where C∞1 and C∞2 are the concentration given far from the membrane, and that we simply called C1

and C2.
Now, the force of the membrane on the particle in a given side of the membrane is given by the derivative

of its potential:

Fmembrane→solute particles =
∑

each solute particle

(−∂xU) (rsolute particle)

Hence, taking a continuous limit of this sum and forgetting the subscripts, we obtain:

Fi =

∫
dx dy dz

(
Cie
−U(x)

kT

)
× (−∂xU) = AkTCi

[
e−
U(x=±∞)

kT − e−
U(x=0)
kT

]
Fi
A

= −kTCi

And finally, the difference of pressure exerted by the fluid on the membrane is equal to:

∆Π = −F2 − F1

A
= kT∆C

Remark.

1. The osmosis pressure results of a conversion of a chemical potential into a mechanical work, thanks to
the effect of entropy.

2. The osmosis pressure is a huge pressure! For instance, a difference of concentration of 2 molars results
in a difference of pressure of 50 bars: this is the pressure 500 m below sea level.

3. Such differences of pressure can be used in order to harvest energy (which is sometimes called blue
energy). For a river like the Amazon river (with a water flux Q = 200 000 m3/s) reaching the sea,
the osmotic energy is 1 kWh/m3 and then the total power that we could obtain is about 1 TW, which
corresponds to the combined power of a thousand nuclear reactors.
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3.4.2 Depletion interactions

The depletion interactions results from the finite size of particles. Indeed, if particles have a non-zero radius,
their presence in a mixture will reduce the available volume in the phase space of the other particles. As we
will see, bringing closer two particles can increase the available volume in the phase space. Hence, entropic
forces will tend to bring closer particles in order to maximize the available volume. In real experiments, the
large and small particles can be for instance colloids with polymers, or soap films with surfactants.

Calculation of the excluded volume

Let’s call σ the diameter of the small particles, and D the diameter of the large ones. When there is only 1
large particle in the mixture, small particles can go everywhere as long as they do not penetrate the large
particle. Therefore, the minimal distance between the center of a small particle and the center of a large one
is equal to D+σ

2 . In this simple case, the excluded volume is just:

V =
4

3
π

(
D + σ

2

)3

=
π

6
(D + σ)3

When there are 2 large particles, the situation is less simple to describe, since the two excluded volumes
of the large particles can interpenetrate themselves, and thus reduce the true excluded volume for the small
particles. If r is the distance between the two centers of the large particles, this situation happens when
r < D + σ.

In that case, a bit of geometry is needed to show that:

V =
π

6
(D + σ)3

[
1 +

3

2

r

D + σ
− 1

2

(
r

D + σ

)3
]

From this, we can apply statistical mechanics to the bath of small particles, cohabiting with 2 large
particles, of fixed position, separated by a distance r. The partition function of these small particles is,
assuming a dilute regime (we neglect the interactions between these particles):

Z =
1

N !

(
Vfree
λ3
T

)N
where, as usual, λT is the de Broglie wavelength, and where Vfree = V − V.
From this, we can derive the free energy:

F(r) = −kT log(Z) = −kT log

(
1

N !

(
Vfree(r)

λ3
T

)N)
≈ Fideal gas +NkT

V(r)

V

From this free energy, we can obtain the force of the small particles acting on the large ones:

F = −∂F
∂r

= ρkT ×
(
−∂V
∂r

)
where ρ is the density of the small particles.
V being an increasing function of r, the force is negative and tends to bring closer the two large particles:

we have obtained an entropic attractive force between the large particles.
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Remark.

1. The same result can be obtained by integrating the osmotic pressure ρkT of the small particles over the
accessible area around the large particles.

2. A liquid-vapour transition can be observed in solutions of polymers and colloids as a consequence of
this entropic attractive force.

3.4.3 Helfrisch interactions

These interactions are due to the fluctuations we have studied in the previous sections. The Helfrisch
interactions are the soft matter analogous of the Casimir attractive forces that are due to the vacuum
electromagnetic fluctuations2.

The Helfrisch interactions are some interactions that occur between fluctuating membranes. As we have
shown before, elastic membranes of size L with a bending modulus B have fluctuations of height h, with:

h2 ∼ kT

B
L2

If two such membranes are close enough one from the other, their fluctuations are limited, since some
configurations may be forbidden (these membranes cannot interpenetrate). This constraint limits the possible
configurations, and, as before, this will create a force tending to remove the constraints.

We want to show, the free energy per unit area will behave like ∼ (kT )2

Bd2 , where d is the size of the
confinement induced by the proximity of the membranes (which corresponds to a repulsive force, acting to
increase d).

Simple derivation

The first way to derive this power law is by counting the number of Fourier modes authorized for a membrane
close to a rigid wall by a distance d. For h > d, the membrane would penetrate the wall. Such a configuration
is forbidden, therefore h has to be smaller than d. Recalling that h2 ∼ kT

B L2, a maximum length Lmax arises

so that: L2
max ∼ Bd2

kT .
Any Fourier mode associated to a length above Lmax is forbiddent. As a consequence, the number of

authorized modes scales as 1/Lmax
2 (Lmax is to the power of 2 because the Fourier modes are in a 2D space

discretized by 2π/Lmax).
Thanks to the equipartition theorem, we can say that each acceptable Fourier mode contributes by kT

2
to the free energy. Finally, the free energy per unit area is:

F
L2
∼ kT

Lmax
2 ∼

(kT )2

Bd2

Derivation from statistical mechanics

The calculation that we will conduct in this section can be seen as a case example for the study of fluctuation-
induced interactions in statistical mechanics.

To begin, we will just consider a membrane confined in a harmonic potential such that:

V ({h}) =

∫
dr

1

2
κh(r)2

The role of V is to mimic the membrane-membrane confinement: later, we will choose κ so that the mean
value of h2 calculated with this potential is equal to d2.

(i) First step: calculation of 〈h2〉.

2There are also Casimir interactions in a fluid at critical point, that can be either attractive or repulsive. This phenomenon
had been proposed by De Gennes and Fischer in 1978, and has been first measured in 2007.
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F({h}) =

∫
dr

[
1

2
B(∇2h)2 +

1

2
κh(r)2

]
Going to the Fourier space, with Parseval’s theorem:

F({h}) =

∫
dq

(2π)2

1

2

[
Bq4 + κ

]
|hq|2 =

1

L2

∑
q

1

2

[
Bq4 + κ

]
|hq|2

With the theorem of equipartition:

〈|hq|2〉 =
kTL2

Bq4 + κ

Finally, thanks again to Parseval’s theorem, we have:

〈h2〉 =
kT

(2π)2

∫ +∞

0

2πq dq

Bq4 + κ

With the successive changes of variable u = q2 and v2 = B
κ u

2, we obtain:

〈h2〉 =
kT

4π

∫ +∞

0

du

Bu2 + κ
=

kT

4πκ

√
κ

B

∫ +∞

0

dv

1 + v2

Finally, with
∫ +∞

0
dv

1+v2 = π/2, we have:

〈h2〉 =
kT

8
√
κB

Remark. limκ→0〈h2〉 = +∞: indeed, without confinement, the fluctuations diverge until they reach the
cut-off 〈h2〉 ∼ L2.

We want the potential of confinement to mimic the confinement induced by two walls unclosing the
membrane and separated by a distance d. As a consequence, we want 〈h2〉 = d2, whence:

κ =

(
kT

8d2

)2
1

B

(ii) Second step: derivation of the free energy induced by a confinement.

To obtain the free energy induced by a confinement of the membrane, we want to compare a situation

with no confinement (κ = 0) and with a confinement at a distance d (κ =
(
kT
8d2

)2 1
B ).

We can write the partition function of the system as:

Z =
∑{
{h}
} exp

(
−F({h})

kT

)
Indeed, this is just a way to rewrite the sum of the partition function:

Z =
∑

all microstates

exp(−βEs) =
∑{
{h}
} ∑

all microstates with {h}

exp(−βEs) =
∑{
{h}
} exp

(
−F({h})

kT

)

with
∑

all microstates with {h} exp(−βEs) = exp
(
−F({h})

kT

)
.

We can also write the partition function as:

Z =
∑{
{hq}

} exp

(
−F({hq})

kT

)
=

∫
dhq1 ...dhqN exp

(
−F(hq1

, ..., hqN )

kT

)
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Remark. Be carefull, this way of writing the partition function implies that we only consider independ hqi .
Therefore, since h is a real function, we cannot use all hqi , because h−qi = h∗qi . As a consequence, we will
only use half of all q vectors.

As a consequence:

Z =
∏
q

∫
dhq exp

(
− L2

2kT
(Bq4 + κ)|hq|2

)
Again with the equipartition theorem:

Z =
∏
q

2πkT

L2(Bq4 + κ)

The total free energy is then:

F = −kT log(Z) = −kT
∑
q

log

(
2πkT

L2(Bq4 + κ)

)
And, finally, we have ∆F , the free energy induced by the confinement:

∆F = F(κ)−F(κ = 0) = −kT
∑
q

log

(
Bq4

Bq4 + κ

)
=
kT

2

∫
dq

(2π/L)2
log

(
1 +

κ

Bq4

)
∝ kTL2

√
κ

B

And, recalling that κ =
(
kT
8d2

)2 1
B , we obtain:

∆F
L2
∝ (kT )2

Bd2

which is the free energy of an entropic repulsion.
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Chapter 4

Noise, brownian motion and dynamics

4.1 Langevin theory

4.1.1 Introduction and hypotheses

Langevin theory is the study of the Langevin equation, which describes the motion of a big particle in a
bath of small particles, the whole system being at thermal equilibrium. The collisions of the small particles
with the big one has two effects: the mean effect of these collisions is a fluid friction force that slows down
the big particle, and in addition to this mean effect, there is a random force, whose mean value is equal to
0, that takes into account the randomness of the collisions.

The Langevin equation is then:

M
dV

dt
= −ζV + δF(t)

where M is the mass of the big particle, V its velocity, ζ the fluid friction coefficient and δF(t) the
random force induced by the collisions.

We have:

〈δF(t)〉 = 0

Furthermore, we suppose from a causalty argument that, if t > t′:

〈δFα(t)Rβ(t′)〉 = 0

〈δFα(t)Vβ(t′)〉 = 0

where R is the position of the big particle.

Remark. Be careful, for t < t′ this is no longer true.

The last hypothesis to make is on 〈δFα(t)δFβ(0)〉. The time scale τ for the force correlation will be
supposed to be very small compared to the macroscopic time scale of the movement of the big particle:
τ � M/ζ. As a consequence, for τ → 0, and supposing that the force does not correlate orthogonal
directions:

〈δFα(t)δFβ(t′)〉 = R0δαβδ(t− t′)

where R0 is for the moment undetermined: its value will have to be calculated from the thermal equilib-
rium (this is the Langevin approach).

In the following, we will only consider a 1D trajectory, in order to simplify the notations.
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4.1.2 Diffusive motion

We want to calculate 〈(x(t)− x(0))2〉 (we will take x(0) = 0), from:

M
d2x

dt2
= −ζ dx

dt
+ δFx(t)

Multiplying the equation and taking its mean value yields:

M〈x(t)ẍ(t)〉 = −ζ〈x(t)ẋ(t)〉+ 〈x(t)δFx(t)〉

We make the hypothesis that 〈x(t)δFx(t)〉 = 0 and we recall that xẍ = 1
2

d
dt

(
d(x2)

dt

)
− ẋ2:

M

[
d2

dt2

(
〈x(t)2〉

2

)
− 〈ẋ(t)2〉

]
= −ζ d

dt

(
〈x(t)2〉

2

)
We call Y (t) = d

dt

(
〈x(t)2〉

2

)
, and from the equipartition theorem, we have M〈ẋ(t)2〉 = kT . Thus:

M
dY

dt
= MkT − ζY

For t→ +∞, we have:

Y (t) =
kT

ζ

And finally, we obtain a diffusive motion for x:

〈x(t)2〉 ∼
t→+∞

2Dt

with D = kT
ζ .

4.1.3 Velocity correlations

We now multiply the Langevin equation by Vx(0) and take its mean value:

M〈dV x
dt

Vx(0)〉 = −ζ〈Vx(t)Vx(0)〉+ 〈δFx(t)Vx(0)〉

and we have 〈δFx(t)Vx(0)〉 = 0 because t > 0.
We define the correlation function as:

C(t) = 〈Vx(t)Vx(0)〉

We have:

M
dC

dt
= −ζC

As a consequence, with C(0) = 〈Vx(0)2〉 = kT
M thanks to the equipartition theorem, we have:

C(t) =
kT

M
exp

(
− ζt
M

)
We can show that the diffusion coefficient D is equal to

∫ +∞
0

dt C(t). We can verify the consistence of
our relations with:

D =

∫ +∞

0

dt
kT

M
exp

(
− ζt
M

)
=
kT

ζ
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4.1.4 Fluctuation-dissipation theorem

Now we totally solve the Langevin equation with the method of variation of the constant:

Vx(t) = Vx(0) exp

(
− ζt
M

)
+

∫ t

0

ds exp

(
−ζ(t− s)

M

)
δFx(s)

M

Now, we have:

〈Vx(t)2〉 = 〈Vx(0)2〉 exp

(
−2

ζt

M

)

+ 2 exp

(
− ζt
M

)∫ t

0

ds
exp
(
− ζ(t−s)M

)
M

〈δFx(s)Vx(0)〉

+

∫ t

0

ds

∫ t

0

ds′ exp

(
−ζ(t− s)

M

)
exp

(
−ζ(t− s′)

M

)
〈δFx(s)δFx(s′)〉

M2

Recalling that 〈δFx(s)Vx(0)〉 = 0 for s > 0, and that 〈δFx(s)δFx(s′)〉 = R0δ(s− s′), we obtain:

〈Vx(t)2〉 = 〈Vx(0)2〉 exp

(
−2

ζt

M

)
+

∫ t

0

ds exp

(
−2

ζ(t− s)
M

)
× R0

M2

Whence:

〈Vx(t)2〉 = 〈Vx(0)2〉 exp

(
−2

ζt

M

)
+

R0

2ζM

(
1− exp

(
−2

ζt

M

))
For t→ +∞, the particle relaxes towards thermal equilibrium:

lim
t→+∞

〈Vx(t)2〉 =
1

M

R0

2ζ
=
kT

M

From this, we obtain the fluctuation-dissipation theorem:

R0 = 2kTζ

that links the fluctuations of the system (R0) to its dissipation (ζ).
We can also write this fluctuation-dissipation theorem as the Green-Kubo equation:

ζ =
1

kT

∫ +∞

0

〈δFx(t)δFx(0)〉dt

4.2 Diffusion and Smoluchowski

In this section, we want to study the evolution of P(R, t), the probability to find the brownian particle at a
position R at a given time t.

Diffusion without an external force

The first equation that we can write is just a conservation law:

∂P
∂t

= −∇ · J

where J is the density of probability current. To complete the equation, we need a relation that is verified
by J, and for that we can use the phenomenological Fick’s law:

J = −D∇P
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A way to grasp the origin of Fick’s law, we can consider 1D brownian particles with a diffusive motion
as
√
〈x2〉 ∼

√
Dt. The current J at a position x0 is the mean number of brownian particles that cross the

plane x = x0 from left to right during a given amount of time, divided by this amount of time:

J = J+ − J− = P(x−∆x)
∆x

∆t
− P(x+ ∆x)

∆x

∆t
∼ −∆x2

∆t
∂xP(x) = −D∂xP(x)

where J+ (resp. J−) is the exact number of particles going from left to right (resp. from right to left)
during ∆t divided by ∆t.

From Fick’s law, we now have:

∂P
∂t

= D∇ · J

This is a diffusion equation. To obtain its solution, we go through the Fourier space, defining:

P(k, t) =

∫
drP(r, t)eik·r

We now have:

∂P
∂t

= −Dk2P

Taking the inverse fourier transform of the solution P(k, 0)e−Dk
2t:

P(r, t) =

∫
dr′ P(r− r′, 0)

1√
4πDt

exp

(
− r′2

4Dt

)
Diffusion with an external force

We define the mobility µ so that at equilibrium, when applied an external force, we obtain:

V = µFext

From what we know in hydrodynamics, we can define a convective flux:

Jconv = PV = µPFext

We can add this to the Fick’s flux in the total flux:

J = −D∇P + µPFext

From this, we can derive the Smoluchowski’s equation:

∂P
∂t

= −∇ · [−D∇P + µPFext] = −∇ · [−D∇P + µP × (−∇Uext)]

where Fext = (−∇Uext).
At equilibrium, we have ∂P

∂t = 0, and then J = 0.

0 = −D∇P + µP × (−∇Uext)
Whence:

∇ (logP) = − µ
D

(−∇Uext)

Finally, we have:

P ∝ exp
(
− µ
D
Uext

)
In order to recover the Boltzmann’s weights P ∝ exp

(
−UextkT

)
, we finally obtain the Einstein relationship:

D = µkT
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4.3 Generalization

This study of P(R, t) can be generalized to any order parameter φ(r, t), whose equilibrium is given by the
minimization of a free energy Ω({φ}).

Non conserved dynamics

We can have the following equation for φ(r, t):

∂φ

∂t
= −Γ

δΩ

δφ
+ δR(t)

where δR(t) is a random function and plays the same role as δF in Langevin’s equation. With the
fluctuation dissipation theorem, we have:

〈δR(t)δR(t′)〉 = 2kTΓδ(t− t′)

Following the same method as before, we can write an equation for P({φ}, t):

∂P
∂t

= − ∂

∂φ

[
−D∂P

∂φ
+ ΓP ×

(
−δΩ
δφ

)]
The equilibrium yields:

P ∝ exp

(
−Ω({φ})

kT

)
and we recover an Einstein equation:

D = kTΓ

Conserved dynamics

We can also work with conserved dynamics. The equations in this case are:

∂φ

∂t
= −∇ · J + δR(r, t)

with:

J = −Γ∇
(
δΩ

δφ

)
and:

〈δR(r, t)δR(r′, t)〉 = 2kTΓδ(t− t′)×
(
−∇2δ(r− r′)

)
4.4 Barrier crossing

The goal in this section is to describe the dynamics of the crossing of an energy barrier. To model this, we
consider a system in a potential U(x) with the following properties:

1. U has a local minimum at x = 0.

2. U has a local maximum at x = x1.

3. U(x1)− U(0) = ∆E.

4. limx→−∞ U(x) = +∞.

5. limx→xmax U(x) = −∞.
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Using the Smoluchowski equation, we have:

∂P
∂t

= − ∂

∂x

[
−D∂P

∂x
+ µP ×

(
−∂U
∂x

)]
Using the Einstein relationship D = µkT and looking for an equilibrium (∂P∂t = 0):

J = cst = −D∂P
∂x

+
D

kT
P ×

(
−∂U
∂x

)
The resolution of this equation yields:

P = A exp

(
−U(x)

kT

)
− exp

(
−U(x)

kT

)∫ x

0

J

D
exp

(
+
U(x′)

kT

)
dx′

and imposing P(xmax) = 0:

P(x) =
J

D
exp

(
−U(x)

kT

)∫ xmax

x

exp

(
+
U(x′)

kT

)
dx′

We define the escape rate ν as the frequency at which particles cross the local maximum of U . By
definition of J , J is equal to ν times the number of particles that are left to the local minimum (i.e. that
has not yet crossed it). This number is equal to

∫ x1

−∞ dxP(x). We then have:

J

ν
=
J

D

∫ x1

−∞
dx exp

(
−U(x)

kT

)∫ xmax

x

exp

(
+
U(x′)

kT

)
dx′

And finally:

ν =
D∫ x1

−∞ dx exp
(
−U(x)

kT

) ∫ xmax
x

exp
(

+U(x′)
kT

)
dx′

Simplification∫ xmax
x

exp
(

+U(x′)
kT

)
dx′ is dominated by what happens close to the local maximum. We expand U around

x1:

U(x) ∼ ∆E − 1

2
κmax(x− x1)2

and
∫ xmax
x

exp
(

+U(x′)
kT

)
dx′ can be approximated as:
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∫ xmax

x

exp

(
+
U(x′)

kT

)
dx′ ≈ exp

(
+

∆E

kT

)∫ +∞

−∞
exp

(
−1

2

κmax
kT

(x− x1)2

)
= exp

(
+

∆E

kT

)√
2πkT

κmax

The other integral,
∫ x1

−∞ dx exp
(
−U(x)

kT

)
, is dominated by what happens close to 0. We expand U close

to 0:

U(x) ∼ 1

2
κminx

2

In that case: ∫ x1

−∞
dx exp

(
−U(x)

kT

)
≈
√

2πkT

κmin

And finally, we recover the Arrhenius formula:

ν =
D

2πkT

√
κminκmax exp

(
−∆E

kT

)

4.5 Application: nucleation theory

In the previous chapters we have studied the liquid-vapour phase transition. We have showed that, even
when one phase is more favoured than the other, there is a free energy barrier per unit volume ∆ω+. This
∆ω+, when multiplied by typical volumes becomes very huge, and a homogeneous bulk phase transition
would take according to Arrhenius formula far too many time.

That’s why phase transition start with a nucleation process: the transition starts locally to involve
gradually the whole volume.

To study nucleation processes, we will consider a situation where the liquid phase is more favourable
than the vapour phase. At the beginning of the process, the whole system is in the vapour phase. It wants
to transform into a liquid. This process is seen as the growth of a liqui drop which starts at R = 0 and that
grows until it occupies the whole volume. We want to know the time it takes for this drop to undergo this
whole process.

To do so, we write the free energy of such a drop of radius R:

∆Ω(R) = −(ρL − ρV )(µ− µsat)
4

3
πR3 + 4πR2γLV

From this, we want the free energy barrier, in order to use the Arrhenius formula. The local maximum
of ∆Ω is achieved at R∗ so that:

∂∆Ω

∂R
(R∗) = 0 = −(ρL − ρV )(µ− µsat)4πR∗2 + 8πR∗γLV

We obtain from the Arrhenius formula the time it would
take for a drop to grow from R = 0 to R = +∞:

τnucleation = τ0 exp

(
∆Ω+

kT

)
This timescale does not depend on the global volume and is

therefore more achievable than the timescale we would obtain
without a nucleation process.
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