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Chapter 1

Introduction to statistical physics:
’more is different’

1.1 Context and Goals

This course is an introduction to statistical physics. The aim of statistical physics is to model systems with an
extremely large number of degrees of freedom. To give an example, let us imagine that we want to model 1L of
pure water. Let’s say that one molecule of water has a typical size of σ = 3Ȧ of space. We then have a density

ρ ∼ 1

σ3
∼ 3 · 1028 m−3 so N = ρ · 10−3 m3 = 3 · 1025 molecules in 1L

Then to describe each molecule we need 3 spatial coordinates, 3 velocity coordinates and 3 angles. Let’s say
that we only care about an approximate position so we divide our volume on each direction in 256 pieces, then
we need 1 byte per coordinate. We do the same thing for speeds and angles. We then need 9 bytes per molecule
to characterize their microscopic state, so in total we need something in the order of 1015 terabytes for one
single configuration. That is a lot of hard drives, just for one configuration. And this is therefore impossible
to capture so much information, in particular if one wants to follow the trajectories of all molecules. One the
other hand, we know that if this liter of water is at 30◦ Celcius it is liquid, but it is a solid at -10◦C and
a gas at 110◦C. Hence we don’t really need the complete information about microscopic states to know how
the full system of particle behave, a few variables (temperature, pressure, etc.) are sufficient. Therefore, the
objective of this lecture is to show how the macroscopic thermodynamic properties relate to and emerge from
the microscopic description of the group of many interacting particles. To do so, we will perform statistical
averages and apprehend the system in terms of probabilities to observe the various states: this is statistical
physics.

Overall, one idea behind the simplifications of statistical physics is that fluctuations are small compared to
mean values. Mean behavior emerge from the statistical averages. But as we will highlight several times in
the lectures, there is more than this obvious result when many particles interact. We will show that a group
of N particles can behave collectively in a manner which is not ’encoded’ trivially in the individual behavior
of each particle, i.e. that groups of individuals have a behavior of their own, which goes beyond the ’DNA’
of each individual. Consider the liquid to ice transition of water: ice and liquid water are constituted by the
very same water molecules, interacting in the same way. So the transition reflects that at low temperature, an
assembly of (many) water molecules preferentially organize into a well structured phase (crystalline), while at
larger temperature they remain strongly disordered phase (liquid). And this huge change is only tuned by a
single parameter (at ambiant pressure): the temperature. This transition reflects that the symmetries of the
collective assembly (for N → ∞) ’breaks the underlying symmetries’ of the microscopic interactions. Hence
’more is different’1 and there are bigger principles at play which we want to uncover.

The contents of the lectures are as follow. We will start by studying on simple examples what are the emerging
laws and how ’more is different’. We will then study statistical physics in the framework of ensembles, which
allows calculating thermodynamic potentials and predicting how a system behave as a function of temperature,
pressure, etc. We will introduce and discuss in details the three main ensembles of statistical physics, namely
the micro-canonical, canonical and grand-canonical ensembles. We will also see how we can create mechanical
energy from entropy 2. The course will then explore phase transitions from thermodynamics and we will explore

1This is the title of a seminal paper by PW Anderson in 1972: P. W. Anderson, ‘More is different’ Science, 177 (4047), 393-396
(1972).

2A typical example which we will consider is osmosis: a tank of water with salty water on one side and pure water on the other.
We place a filter in the middle that lets pass only water and not salt, then the entropy of the system will generate a mechanical
force on the barrier.

9
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exhaustively the model of Van Der Waals for the liquid-vapour phase transition. Finally, we will introduce
quantum statistical physics.

1.2 Statistics and large numbers.

As a first example, we consider a simple statistical model. We take a volume V that we partition in V1 and V2,
and we want to know what is the probability of finding n = N1 particles in the 1st volume. We assume that a
particle has a probability p = V1

V to be in V1 and q = 1 − p = V2

V to be in V2. To have n particles in the first
volume, we need to realize n times the previous probability and N −n times its complementary, and since order
does not matter we also get an extra binomial term. In summary, we have :

P(n = N1) = Bin(p =
V1

V
, n) =

(
N
n

)
pn(1− p)N−n =

(
N
n

)
pnqn

As a sanity check, one can verify the following sum rules:

N∑
n=0

P(n = N1) =

N∑
n=0

Bin(
V1

V
, n) = (p+ 1− p)N = 1

Let us now calculate the average and standard deviation which we compute as follows:

〈n〉 =

N∑
n=0

nP(n = N1) =

N∑
n=0

n

(
N
n

)
pnqN−n = p

∂

∂p

N∑
n=0

(
N
n

)
pnqN−n = p

∂

∂p
(p+ q)N = Np

The simple mathematical trick in the above equation can be generalized by introducing the generating function:

p̂(z) =

N∑
n=0

znp(n)

It is easy to show that:

p̂(1) = 1 and 〈nk〉 =

(
z
∂

∂z

)k
p̂(z)

∣∣∣∣∣
z=1

From this we can get the standard deviation:

〈n2〉 = z
∂

∂z
z
(
zNp(zp+ q)N−1

) ∣∣∣
z=1

= z
(
Np(zp+ q)N−1 + zp2N(N − 1)(zp+ q)N−2

) ∣∣∣
z=1

= Np+Np2(N−1)

Which then gives:
∆n2 = 〈n2〉 − 〈n〉2 = Npq

This quantifies the fluctuations around the mean value. For the large system we are considering, see e.g. the
∼ 1026 particles contained in 1L of liquid water, we have

∆n

〈n〉
=

1√
1026

= 10−13 � 1

showing that the fluctuations are negligible.
Now let us focus on the distribution function p(n) in the ’ thermodynamic limit’, N → +∞. Since we are

dealing with small values pf p(n), we calculate the log of p(n):

log(p(n)) = N logN −N −
[
n log n− n+ (N − n) log(N − n)− (N − n)

]
+ n log p+ (N − n) log q

The maximum n∗ of this function is

∂

∂n
log(p(n))

∣∣∣∣∣
n∗

= − log n+ log(N − n) + log p− log q

∣∣∣∣∣
n∗

= 0⇔ n∗

N − n∗
=

p

1− p
⇔ n∗ = Np

and we indeed recover the previous value for the mean as the point of maximal probability. We then expand
around this value n∗ as:

log(p(n)) = log(p(n∗)) +
∂

∂n
log p(n)

∣∣∣∣∣
n∗

(n− n∗) +
1

2

∂2

∂n2
log(p(n))

∣∣∣∣∣
n∗

(n− n∗)2 + · · ·

= log(p(n∗))− 1

2Npq
(n− n∗)2
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Np = < n >

Δn = √Npq

p(n)

n
496 498 500 502 504

0.2

0.4

0.6

0.8

1.0

Rewriting this we get that:

p(n) = A exp

(
− 1

2Npq
(n− n∗)2

)
and normalization gives A =

1√
2πNpq

We see that p(n) approaches a Gaussian as N → +∞.

1.3 Emergent Laws: example of a voting model.

As we have announced in the introduction, ’more is different’ and a collective behavior
may emerge in an assembly of particles, which is not trivially encoded in its microscopic
description. As we quoted, this is refered to as a ’symmetry breaking’, which may occurs
when the number of particles goes to infinity, N → +∞ We will illustrate this concept on
the example of a voting model: ’the majority vote model’. We will show that the outcome
of a vote does not reflect obviously the voting of individuals when they interact, even only
within their close neighbours.

We consider a square lattice with N voters/nodes, illustrated on the figure. To each
node we associate a ’vote’, which is here described as a parameter that can take two values:
σi = +1/ − 1. We then make the system evolve by finite time steps ∆t which can correspond to a day for
example. People are discussing politics among each other (but only with their neighbours) and the evolution
consists of each voter/node having a probability 1 − q of taking the majoritary opinion of its neighbors and a
probability q of taking the minoritary one. Now we define the following:

wi := probability that i changes opinion Si := neighboring opinion = sign(σi↑ + σi↓ + σi← + σi→)

We can see case by case [we leave the demonstration as an exercise] that we can rewrite:

wi =
1

2
(1− (1− 2q)σiSi)

And note that this formula is also well-behaved for Si = 0.
The question now is: how does the opinion of i evolve ? We know that σi will stay the same with a probability

1− wi and change by a quantity −2σi (from 1 to -1 or vice-versa) with probability wi, so we get:

∆σi
∆t

= 0 · (1− wi)− 2σiwi = −σi + (1− 2q)σ2
i Si = −σi + (1− 2q)Si

and we deduce
dσi
dt

= −σi + (1− 2q)Si

with Si = sign
(∑

k∈N (i) σk

)
. Now let’s call m = 〈σi〉 the average opinion. Furthermore, one can rewrite Si,

which is defined in terms of a sign function, in terms of individual values for the neighbouring ’vote’:

Si =
3

8
(σi↑ + σi↓ + σi← + σi→)− 1

8
(σi↑σi↓σi← + σi↓σi←σi→ + σi←σi→σi↑ + σi→σi↑σi↓)

We leave it as an exercise to the reader to check case by case that this formula works.
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Now we are interested in the average properties of the vote. We want to calculate an average vote, denoted
as 〈σi〉 for node i. Note that on average the vote is the same for every node so that 〈σi〉 = m is independent
of i. This is a very complicated matter to calculate this quantity exactly from the previous equations since
there are couplings between neighbouring sites. But one can do some approximations which capture the main
behaviors at play: we will do what is called the ’mean field approximation’ which will be justified and explained
later in the lectures. It simply consists of saying that every node behaves more or less like all the others, and
identify to the mean value, here m. Accordingly, average of products like σi↓σi←σi→ will be approximated by
their ’uncoupled’ version: 〈σi↓σi←σi→〉 ' 〈σi↓〉 · 〈σi←〉 · 〈σi→〉 ' m3. More concretely the ’uncoupling’ of the
dynamical equation leads to :

d〈σi〉
dt

= −〈σi〉+ (1− 2q)

3

8

∑
k∈N (i)

〈σk〉 −
1

8

(
〈σi↑σi↓σi← + · · · }

) ≈ −m+ (1− 2q)

[
3

2
m− 1

2
m3

]

Now we call γ = (1− 2q) and so we obtain:

dm

dt
= (−1 +

3

2
γ)m− γ

2
m3

We are interested in the stationary states, dm/dt = 0, which writes

dm

dt
= 0⇔ m(−1 +

3γ

2
− γ

2
m2) = 0⇒

{
m = 0

m2 = − 2ε
γ

Now if ε > 0 then m = 0 is the only solution, otherwise m = 0 and m = ±
√

2ε
γ are the two solutions.

Furthermore ε = 3(q − 1
6 ) so we see that the critical value is qc = 1/6 for the parameter q such that for q < qc

a non-trivial solution m 6= 0 for the global solution emerge. It is also quite straight-forward to check that all
solutions are stable with the exception of m = 0 when q < qc.

Average voting results as a

function of q

0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.2

0.4

As a side note, we mention that the numerical solution of the full model gives qualitatively similar results
(changing the critical value qc for the transition as well as the dependence of m(q) in particular close to qc);
cf for example C. Castellano, S. Fortunato, & V. Loreto ‘Statistical physics of social dynamics’ Reviews of
modern physics, 81, 591 (2009). This shows that the previous mean-field approximation describes at least
qualitatively the behavior at stake.

What is emerging from this example is that depending on q, the system may collectively break the underlying
microscopic symmetry (which do not promote one solution or the other) to yield a non-zero average for the
vote for values of q below a critical value qc. This is not contained a priori in the microscopic equations. This
emerging solution is a result of the collective, statistical behavior. Hence more is different, as put forward by
PW. Anderson in his article.

This is a fundamental aspect of statistical physics and at the core of the understanding of phase transitions
in many-body systems. We will come back to this aspect later in the lectures.



Chapter 2

Combinatorics and emergent laws.

In this chapter we will make a first study of ideal systems in order to grab the phenomena at play. A more
thorough and detailed analysis of ideal systems will then come in the next chapter.

2.1 Perfect Gas

2.1.1 Combinatorics of an elementary system without interactions.

To start with we consider a fixed volume V with a fixed number of particles N
that don’t interact with each other, so we ignore collisions between parrticles
altogether (we however need to consider collisions with the confining container).
The system is also completely isolated from the ’outside’. Then each particle is
described by its position and velocity (or momentum):{−→ri = (xi, yi, zi)(t)

−→pi = m(vxi , vyi , vzi)(t)

So our system is evolving in a 6 dimensional phase space, which we denote as Γ.
We then subdivide this space in elementary cells of size ∆Γ, writing:

Γ =
{
{−→r1 ,
−→p1} , {−→r2 ,

−→p2} , · · ·
}

and ∆Γ = (∆x∆y∆z∆px ∆py ∆pz)

The size of ∆Γ will be without importance in the following but we will see later that it is quantified by quantum
effects. Now let α be a microscopic state, since the system is completely isolated we have that:

εα =
1

2
mv2

α =
1

2

p2
α

m

Now we make the following postulate: all the configurations of the phase space are equiprobable, which
seems quite natural for the system at stake. Hence, if we divide the phase-space into M cells in total, each cell
has a probability of p = 1

M to be occupied by a microscopic state, i.e. a particle with a given position and
velocity. The question we want to answer is what is the most probable configuration for our system. Similarly
as in the previous chapter we get that:

P(n1, n2, · · · , nm) =
N !

n1!n2! · · ·nm!

(
1

M

)N
where ni is the number of particles in a state i. Furthermore we have the following constraints on the fixed
total number of particles and total energy:

n1 + n2 + · · ·+ nm = N and n1ε1 + n2ε2 + · · ·nmεm = E

To maximize the probability under these constraints, the easiest way is to use Lagrangian multipliers; we refer
to the Appendix in Chapter 10 for details on the method. We introduce accordingly the function

F (n1, · · · , nm) := logP(n1, · · · , nm)− µ

(
m∑
i=1

ni −N

)
− β

(
m∑
i=1

niεi − E

)

13
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where µ and β are the Lagrangian multipliers, and minimize F versus each ni. Using Stirling’s formula we
immediately get that:

∂F

∂ni
= 0 = − log ni − µ− βεi

so the most probable state is
ni = e−µ−βεi

Then the Lagrange parameters µ and β are fixed by the initial constraints: N =
∑m
i=1 ni = N(µ, β) and

E =
∑m
i=1 niεi = E(µ, β).

2.1.2 Distribution of Energy

Perfect Gas

Let us now come back to the perfect has. We want first to estimate how many particles have a given energy:
ε = 1

2mv
2. Using the previous result we find that:

#particles with energy ε = C d3~r d3~v e−β
1
2mv

2

Using the normalization to determine C we get that:∫
C d3~r d3~v e−β

1
2mv

2

= N ⇒ CV

(√
2π

βm

)3

= N

So we get the following result:

# particles with (~r,~v) = d3~r d3~v ρ

(
βm

2π

)3/2

exp
[
− β 1

2
mv2

]
with ρ = N/V

This is the so-called Maxwell-Boltzmann distribution.

Average Energy

From the previous computation we can calculate the average energy as

E =

∫
d3~r

∫
d3~v

(
1

2
mv2

)
ρ

(
βm

2π

)3/2

exp

(
−β 1

2
mv2

)
= N

(
βm

2π

)3/2 ∫
d3~v

(
1

2
mv2

)
exp

(
−β

2
mv2

)
(2.1)

( · · · ) =
3

2

N

β

In the absence of any interaction between particle, we expect that the energy is purely thermal and E ∼ T so
β ∼ 1

T . More precisely we will see that β = 1
kBT

with the prefactor kB = 1.38 · 10−23 J/K being the Boltzmann
constant. This leads to the simple result:

E =
3

2
NkBT

Note that the definition of temperature is somewhat arbitrary. It is defined such that under ambiant pressure,
ice melts at 0◦ Celcius and 273 Kelvin, and liquid water boils at 100◦C, and 373K.

2.1.3 Elements of kinetic theory and law of Boyle-Mariotte.

The law of Boyle-Mariotte highlights that the pressure P and volume V of a gas system are related accoring to
the relationship

P × V = cst

for a given temperature.
Formally this takes the form of the equation of state for the perfect gas as

PV = NkBT

where T is in Kelvin and the prefactor kB is the Boltzmann constant (kB = R/N with R = 8.31J.mol−1.K−1

the universal constant of gases and N the Avogadro number). Let us derive this result using kinetic theory.

Pressure

The pressure is the force acting on surfaces, which is due to collisions of the particles bouncing on the surface.
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When a particle bounces on the surface, its momentum will change by

(∆~p)x = −2mvx

and the average force sums up all momentum changes of particles bouncing on
the surface:

~Fwall =
∑

i colliding during ∆t

∆pi
∆t

For a given time step ∆t, we need to determine how many particles are colliding
with the wall. Reminding that all particles maintain the same velocity in this time
step ∆t (since they don’t experience collision between them), this number is given
by the number of particles contained contaned in a cylinder of base ∆S and height
vx∆t (with vx > 0). We thus deduce

dFx = −
∫
vx>0

d3~v
∆px
∆t

(vx∆t dS)Cf(~v)

where f is the previous Maxwell-Boltzmann distribution, and the pressure is

P =
dFx
dS

= ρ

∫
vx>0

d3~v 2mv2
xf(~v)

We can rewrite this result as
P = ρ〈2mv2

x〉vx>0

This can be calculated using the expression for the Maxwell-Boltzmann distribution, to obtain

〈v2
x〉vx>0 =

1

2βm

Plugging this back in the equation for the pressure we obtain

P = ρ× 2m〈v2
x〉vx>0 =

ρ

β

and using the previous value for β = 1/kBT , we get PV = N
β leading to the final result

PV = NkBT

Orders of magnitude

The thermal energy at 300K is kBT = 4 10−21 J and one gets

v ∼
√
kBT

m
∼ 102 m/s

The atmospheric pressure is P = 105 Pa for the molar density of air (corresponding to a volume per mole of
22.4 liter).

The force exerted on a 1m2 window is 105 N (corresponding to the weight of a few elephants...). Although
this might seem huge one has to remember that the same force is exerted on both sides of the window, which
explains why the window isn’t exploding. Furthermore one might wonder if a pressure fluctuation on one
side may lead to a intermittent force imbalance and break the window ? Actually the pressure fluctuations
are ∆P

P = ∆N
N ∼ 1√

N
∼ 10−13 and may only lead to force fluctuations of the order of 10−8 N according to

the previous results. Fortunately this clearly is not enough to break a window. We are somewhat lucky that
fluctuations are small, otherwise life would be a bit more complicated.

2.1.4 Barometric Law

We now consider the same problem but we now add gravity (or any other time-independent potential V (~r)).
The modification is quite easy to make, it suffices to change the energy of a cell as follows:

εi =
1

2
mv2

i + V (~ri) =
1

2
mv2

i +mgzi

Then the Maxwell-Boltzmann distribution is re-written as follows:

# particles with (~r,~v) ∝ exp
[
− β

(
1

2
mv2 +mgz

)]
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And so we get that:
ρ(z) = ρ0 exp(−βmgz)

If we compute this with the usual balance of forces method from mechanics we get the same result:

0 = −P (z + dz)dS + P (z) dS − ρmg dS dZ = −∂P
∂z

dS dz − ρmg dS dz

So we get that: {
∂P
∂z = −ρmg
P = ρkBT

⇒ ∂ρ

∂z
= − mg

kBT
ρ⇒ ρ = ρ0 exp

[
−mgz
kBT

]

2.2 Introduction to the notions of statistical ensembles and funda-
mental postulate.

From the previous discussion, one may conclude that, while the previous approach would be sufficient to consider
ideal systems, one needs more powerful tools to adress the statistical properties of many-body interacting systems
in the large number N → ∞. Such a tool is provided by the ensemble theory, which we will introduce in the
following.

But we first need to say a few words about the dynamics of systems. This will incidently hint at some
constraints on the theory of ensemble we will build.

2.2.1 Dynamics

Let us consider a system of N particles, so that our system is described by 2N vectors, positions and velocties:
−→ri (t), −→vi (t). In dynamical systems, one prefers to use equivalently 2N ’canonical’ variables: −→qi (t), −→pi (t), which
in the present case are the position and momentum (see below). We introduce the Hamiltonian H({−→qi ,−→pi}, t),
and the equations of motion of our system are: {−̇→qi = ∂H

∂−→pi−̇→pi = − ∂H
∂−→qi

H =
1

2

−→p 2

m
+ V (−→q ) then we get that −̇→qi =

∂H
∂−→p

=
−→pi
m

We then introduce the phase space Γ = {−→qi ,−→pi} and subdivide it in base elements dΓ =
∏N
i=1 d−→qid−→pi . We then

introduce the microscopic density ρ(Γ, t), which one can define as

ρ(Γ, t) =

N∏
i=1

δ(−→qi −−→qi (t))δ(−→pi −−→pi (t))

Sturm-Lioumville equation.

Let us establish the dynamical equation for ρ(Γ, t). We calculate accordingly

∂ρ

∂t
=
∑
i

(
− ∂−→qi

∂t

)(
∇qiδ(

−→qi −−→qi (t))δ(−→pi −−→pi (t))
) N∏
j=1,j 6=i

δ(−→qj −−→qj (t))δ(−→pj −−→pj (t))

+
(
− ∂−→pi
−→
∂t

)(
∇qiδ(

−→qi −−→qi (t))δ(−→pi −−→pi (t))
) N∏
j=1,j 6=i

δ(−→qj −−→qj (t))δ(−→pj −−→pj (t))

where we used
∂

∂t
δ(x− x(t)) = −∂x

∂t
δ′(x− x(t)) = −ẋ∇xδ(x− x(t))

We then rewrite this result as:

∂ρ

∂t
= −

(∑
i

−̇→qi∇qiρ+ −̇→pi∇piρ

)
= −

∑
i

(
∂ρ

∂−→qi
∂H
∂−→pi
− ∂ρ

∂−→pi
∂H
∂−→qi

)
We then introduce what is called the Poisson bracket:

{A,B} =
∑
i

(
∂A

∂−→qi
∂B

∂−→pi
− ∂A

∂−→pi
∂B
−→qi

)
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We can then write the Sturm-Liouville equation:

∂ρ

∂t
= {H, ρ}

Note that one can re-write:
∂ρ

∂t
= −

∑
i

∇qi(
−̇→qi ρ) + ∇pi(

−̇→piρ)

because

(∇qi
−̇→qi + ∇pi

−̇→pi )ρ =

(
∂2H
∂−→qi ∂−→pi

− ∂2H
∂−→qi ∂−→pi

)
ρ = 0

This leads to the final result
∂ρ

∂t
= −∇(−→v ρ)

shich shows that probabilities are conserved.

An important result of this conservation equation is that any function that depends only on the
hamiltonian H is a stationary solution of the Liouville equation, or in mathematics terms:

ρ ≡ ρ0(H) verifies
∂ρ

∂t
= {H, ρ} = 0

2.2.2 Ensembles and postulate

We want to move from a microscopically dynamic system to a probabilistic description. To do so, one imagines
many different ’representative’ trajectories of the system in the phase space, following the same dynamics but
starting from different initial conditions.

Starting from a given set of M initial conditions, the trajectory of the system will explore a number of
microscopic states in the phase space. We then consider how the trajectories do fill the phase space when
averaged over the ’M’ replica. We then state that the density of probability for the system to be in a state
’Γ = {~qi, ~pi}’ in the phase space corresponds to the average presence of the trajectories of the system around
this state ’Γ’, i.e:

ρ(Γ) =
1

M

∑
α

ρα(Γ)

where α runs over the sets of M initial conditions, i.e. the replica. One can then define averages like:

〈A〉 =

∫
dΓρ(Γ)A(Γ)

with dΓ = Πid~qi d~pi. In order to calculate such averages, one needs to have an expression for the density ρ(Γ)
at equilibrium. A hint for ρ(Γ) is given by the previous Sturm-Liouville theorem, showing that any expression
for the density ρ ≡ ρ(H) which is a functional of the hamiltonian is a stationary solution. We shall come back
to this later on. However, note that the density ρ is expected to depend on the global conditions imposed:
i.e. whether the energy is fixed, or the temperature; whether the number of particle is fixed or the chemical
potential, etc. This introduces the notion of ’ensembles’:

Ensembles

The study of statistical physics separates into multiple ’ensembles’, depending on such global conditions. We
are going to consider:

• The micro-canonical (N,V,E) ensemble: the energy of the system is fixed and the system is isolated, so
N and V don’t vary either.

• The canonical (N,V, T ) ensemble: Instead of fixing the energy we know fix the temperature. So N,V, T
are fixed.

• The grand-canonical ensemble (µ, V, T ): we fix the chemical potential instead of the number of particles.
So µ, V, T are fixed.

Many other ensembles can be introduced depending on the global conditions and globally conserved parameters.
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Fundamental Postulate

This is the key postulate which will allow us to calculate the statistical properties of systems. It generalizes the
results we discussed above on the various simple examples (perfect gas, etc.).

In an isolated system at equilibrium, all the microscopic states are equally probable.

Remark that this means that at equilibrium ρeq(Γ) becomes independent of Γ and we have instead that:

ρeq =
1

number(#) of microscopic states

which, as we will see, depends on the energy E. Note as well that this agrees with the microscopic dynamics
since it does satisfy the previous Liouville equation. If ρ depends only of E it can be written as a function of
H and so is a stationary solution of the Liouville equation.

This postulate is in some sens the most ’simple’ that one can propose. But in spite of its apparent simplicity,
it is extrememy powerful and agrees with all experimental results.

Based on this postulate, we will first build the microcanonical ensemble in the next chapter. Hereafter we
will build the canonical and grand-canonical ensembles.



Chapter 3

Microcanonical ensemble.

In the microcanoncal ensemble we consider situations in which the system is isolated: the total energy, the
volume and the number of particles are fixed.

3.1 Microcanonical partition function.

We made the following postulate:

ρeq(Γ) =
1

Ω
where Ω = # microstates of energy E

Another way to write this is:

Ω =
∑

microstates s|N(s)=N,V (s)=V,E(s)=E

1

Now to simplify calculus we introduce an uncertainty on the energy ∆E. So instead of requiring a strict equality
we only require that E ≤ H(Γ) ≤ E + ∆E. Although not obvious at first we will see that in the end ∆E has
no impact on the physics and is simply a calculus trick. We also define the average of a quantity as:

〈A〉 =

∫
dΓA(Γ)ρ(Γ) =

∫
E≤H(Γ)≤E+∆E

dΓ ·A(Γ)∫
E≤H(Γ)≤E+∆E

dΓ · 1

We now introduce the partition function. We divide our phase space into small elements with volume:

∆Γ = ∆−→qi∆−→pi = h3 where h is Planck’s constant.

As to now, h just fixes the dimension of an elementary cell in phase space. Now instead of summing on all of
our microstates as we did before we are going to use this subdivision and re-write:

Ω =
1

N !

∫
E≤H(E)≤E+∆E

dΓ

h3N
· 1 (3.1)

Ω is the partition function.

This is a central quantity in statistical physics. Here this expression corresponds to the classical partition
function and we will discuss at the end of the lectures its quantum counterpart.

Note that we add the N ! term because our integral does not take into consideration the undiscernability of
the particles and we thus force it by considering all permutations between particles, hence divide by a N ! factor.
Note though that the adding of this N ! is not so obvious and hides some physics subtleties 1. In the quantum
framework, indiscernability is built-in without requiring to enforce it.

3.2 Entropy and Temperature.

We define the entropy, as done by Boltzmann in 1872, by:

S = kB log Ω with kB being the Boltzmann constant. (3.2)

1This point is still being discussed, cf. D. Frenkel, Molecular Physics, 112 2325 (2014)

19
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Then the temperature is defined by:

1

T
=
∂S

∂E

∣∣∣∣∣
V,N

We will see this more in detail later, but we just mention that the entropy is an extensive variable and T is an
intensive variable so when we consider two systems 1, 2 in equilibrium, we have:

S1∪2 = S1 + S2 while T1∪2 = T1 = T2

3.3 Entropy of the perfect gas.

A perfect gas is a gas with no interactions, which translates to:

H(Γ) =

N∑
i=1

−→pi 2

2m

Now what we have to compute is:

Ω =
1

N !

1

h3N

∫
E≤
∑N
i=1

−→pi2
2m≤E+∆E

dΓ

We then decompose dΓ in its two fundamental building blocks and use the fact that the positions are independent
of the energy. We then get:

Ω =
1

N !

1

h3N

∫
V×V×···

d−→r1 · · · d−→rN
∫

2mE≤
∑
i
−→pi2≤E+∆E

d−→p1 · · · d−→pN =
V N

N !h3N
∆V(E)

where we introduced the volume ∆V(E) defined as:

∆V(E) =

∫
2mE≤

∑
i
−→pi2≤E+∆E

d−→p1 · · · d−→pN

To do so we use our ∆E term in the following way, we say that:

V(E) =

∫
0≤
∑
i
−→pi2≤2mE

d−→p1 · · · d−→pN and ∆V(E) = V(E + ∆E)− V(E)

Note that this corresponds simply to the volume of a hyper-sphere of dimension 3N , for which we know the
explicit formula:

V(E) =
π

3N
2

( 3N
2 )!

R3N here with R =
√

2mE

Then we write:

∆V = V(E + ∆E)− V(E) ≈ ∆EV ′(E) with V ′(E) =
π

3N
2

( 3N
2 )!

3N

2

(2mE)
3N
2

E

We can then deduce that:

Ω =
V N

N !h3N

π
3N
2

( 3N
2 )!

(2mE)
3N
2

3N
2 N∆E

E

We can now compute the entropy of our system:

S = kB log Ω

And if we write Ω = ωN 3N∆E
E we then get:

log Ω = N logω + log

(
3N∆E

E

)
≈ N logω

Note that the second term log
(

3N∆E
E

)
is of order logN and completely negligeable as compared to the first

term scaling in N (just compare 1023 to log 1023 ≈ 50). Now we get:

S ≈ kB log

[
V N

N !h3N

π
3N
2

( 3N
2 )!

(2mE)
3N
2

]

= kBN

(
log V

(
2πmE

h2

) 3
2

− logN + 1− 3

2
logN +

3

2

)
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so that one deduces

S = kBN

(
log

(
V

N

( 4π
3 mE/N

h2

)3/2
)

+
5

2

)
This is the so-called Sackur-Tetrode formula.

We now introduce a few variables:

• ρ = N
V , the numeric density not to be confused with the previous ρ(Γ), the phase space density.

• λ =
√

h2

4π
3 m

E
N

which is called the De Broglie wavelength.

The De Broglie wavelength indeed has the unit of a length and actually corresponds to the length under which
quantum effects dominate and become non-negligible. For a perfect gas at 300K this gives λ ∼ 10−11m, and
the distance in between particles 1

ρ1/3 ∼ nm� λ. Now re-writing the formula we have:

S = kBN

(
log

1

ρλ3
+

5

2

)
(3.3)

Note that if we had not included the N ! indiscernability term earlier, ρ = N/V would be replaced by 1/V
in the expression for S and S ∼ N log V . Hence the entropy would not behave as an extensive variable, which
is not acceptable.

Temperature

Now that we have the entropy we can try and compute the temperature. We have the formula:

1

T
=
∂S

∂E

∣∣∣∣∣
V,N

and S = kBN

(
log
(
αE3/2

)
+

5

2

)

with α a term independent of temperature. This then gives:

1

T
=
∂S

∂E

∣∣∣∣∣
N,V

= kBN
3

2E
⇒ E =

3

2
NkBT

3.4 General Properties of Entropy.

3.4.1 Evolution towards equilibrium: increase of entropy.

We are as always considering an isolated system where at t = 0 we add a constraint
’x’ imposed on the global state of the system. When we remove the constraint
the number of possible microstates increases and therefore:

Ωf ≥ Ωi so Sf ≥ Si and ∆S ≥ 0

When the constraint x is released, entropy increases in the path towards equilib-
rium: S(x) is therefore maximal at equilibrium. Then a general property that we
are going to look at now is that the equilibrium is found by maximizing the
entropy, as a function of the constraint x.

3.4.2 Thermodynamic equilibrium.

We consider the following system: we take a fixed isolated volume and separate
it in two systems V1, N1, E1 and V2, N2, E2 separated by an impermeable barrier.
However energy can be exchanged in between the two systems. So we have V1, V2

and N1, N2 constant, and E = E1 + E2 constant.
Then the number of microstates is given as follows (?)

Ω = Ω1 × Ω2

So we have that:

S1∪2 = kB log Ω = kB log Ω1 + kB log Ω2 ⇒ S1∪2 = S1 + S2
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We now look for the equilibrium. So we are trying to maximize the following function:

S1∪2(E1, E2 = E − E1, V1, V2, N1, N2) = S1(E1) + S2(E − E1)

We see immediately that we need to maximize for E1 so:

equilibrium = max
E1

S(E1)

So we obtain:

0 =
∂

∂E1
S1∪2 =

∂S1

∂E1

∣∣∣∣∣
eq

− ∂S2

∂E2

∣∣∣∣∣
eq

=
1

T1
− 1

T2
⇒ T1 = T2

Alternative (more rigorous) method.

Actually the previous description and factorization (Ω = Ω1 × Ω2) in (?) is not obvious, because, while E =
E1 + E2 is indeed constant, the energy E1 is not fixed. In practice one should rather write:

Ω(E) =
∑
E1

Ω1(E1)Ω2(E − E1) =

∫
dE1

∆E
Ω1(E1)Ω2(E − E1)

In order to evaluate this integral, we will use the so-called saddle point method. The idea is that the functions
Ωi(Ei) are very sensitive functions of the energy: this is because Ω ∼ eN×s, with s ∼ O(1) the entropy per
particle and N ∼ 1023, so that any variation in s leads to a huge variation in Ω. Hence the integrand is extremely
spiked at its maximum value and the integral is dominated by this maximum. To make this explicit, we thus
write:

Ω(E) =

∫
dE1

∆E1
e
S1(E1)
kB

+
S2(E−E1)

kB

and find the point where the integrand is maximum as a function of E1. This maximum occurs for an energy
E∗1 such that

max
E1

S1(E1) + S2(E − E1)⇒ 1

T1
(E∗1 ) =

1

T2
(E∗1 )

Denote E∗1 the value for which the maximum is reached. Now we expand the integrand around its maximal
value taken at E1 = E∗1 :

S1 + S2(E1) ' S1(E∗1 ) + S2(E − E∗1 ) +
∂

∂E1
(S1 + S2)

∣∣∣∣∣
E∗1

(E1 − E∗1 ) +
1

2

∂2

∂E2
1

(S1 + S2)

∣∣∣∣∣
E∗1

(E1 − E∗1 )2 + . . .

Then plugging this back in the integral we get:

Ω(E) = e
S1(E∗1 )+S2(E−E∗1 )

kB

∫
dE1

∆E
e

1
2kB

∂2(S1+S2)

∂E2
1

∣∣∣
E∗1

(E1−E∗1 )2

This is a Gaussian integral that we can compute exactly and we get :

Ω(E) = e
S
kB

√√√√ 2πkB∣∣∣ ∂2S
∂E2

1

∣∣
E∗1

∣∣∣∆E2

Note that we take the absolute value because the entropy function is concave and its second derivative versus
the energy is negative. We then deduce:

Seq = kB log Ω = S1(E∗1 ) + S2(E − E∗1 )︸ ︷︷ ︸
∼N

+

∼logN︷ ︸︸ ︷
log

√√√√ 2πkB∣∣∣ ∂2S
∂E2

1

∣∣
E∗1

∣∣∣∆E2

The last term is O(logN) since ∂2S
∂E2

1
∼ 1/N . Therefore in the thermodynamic limit N →∞, one gets:

Seq = S1(E∗1 ) + S2(E − E∗1 ) with E∗1 such that
1

T1
=

1

T2

We therefore recover the above results, justifiying a posteriori the previous factorization (?).
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3.4.3 Pressure and chemical potential.

We can rewrite the previous results under a differential form as:

dS =
1

T
dE when all the other parameters are fixed.

More generally, if the systems depends on a state parameter X, then we define the thermodynamic force F ,
conjugate to X, by the following relation:

dS = −F
T

dX so equivalently F = −T ∂S
∂X

∣∣∣∣∣
other parameters fixed

We will see that this formula is very general and identifies well with the standard expression for pressure and
other forces. Now we write:

dS =
1

T
dE −

∑
α

Fα
T

dXα or equivalently dE = TdS +
∑
α

FαdXα

Pressure.

If we say that we can make the volume vary, we have X = V and we expect to get pressure as a conjugate force:
δW = −PdV . Indeed we get the expected formula:

P = −T ∂S
∂V

∣∣∣∣∣
E,N

⇒ dE = TdS − PdV

Chemical potential.

The chemical potential is a force that comes from the fact that the number of particles can vary. So we have
X = N then:

F = µ = −T ∂S
∂N

∣∣∣∣∣
E,V

So we can write:

dE = TdS − PdV + µdN

Equilibrium.

When we studied the previous system we only made the energy vary, but we could make the number of particles
vary as well as the volume. Then we have that:

S = S1 + S2 = S1(E1, V1, N1) + S2(E − E1, V − V1, N −N1)

Then to maximize the entropy we have to cancel all the partial derivatives:

∂S

∂E1

∣∣∣∣∣
eq

= 0⇒ 1

T1
− 1

T2
= 0

∂S

∂V1

∣∣∣∣∣
eq

= 0⇒ P1

T1
− P2

T2
= 0

∂S

∂N1

∣∣∣∣∣
eq

= 0⇒ −µ1

T1
+
µ2

T2
= 0

So at equilibrium we require that:

T1 = T2 and P1 = P2 and µ1 = µ2
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3.5 Examples

3.5.1 Back to the perfect gas.

Now back to the perfect gas, we have that:

S = kBN

(
log

[
V

N

(
4πmE

3Nh2

)3/2
]

+
5

2

)

And applying the definitions we get that:

E =
3

2
NkBT

P =
N

V
kBT

µ = kBT log

(
N

V
λ3

)
where λ =

√
h2

2πmkBT

3.5.2 Ideal polymers and entropic forces

Let us consider a simple model of polymers, where we neglect interactions between monomers. We assume that
the polymer is constituted of N connected monomers, with random orientations. We want to calculate the
statistics of the polymers.

Length scales

Starting from an initial position of an initial monomer ~R0 = 0, the position of the other end of the polymer is

~RN =

N∑
i=1

a~ui

with a the length of a monomer, and ~ui is a unit vector giving the direction of the monomer. In this model of
an ideal polymer, this is a random variable. We deduce

〈~RN 〉 =

N∑
i=1

a〈~ui〉 = 0

where 〈.〉 denotes an average over configurations of the polymer. Now,

〈~R2
N 〉 = 〈

(
N∑
i=1

a~ui

)2

〉 = a2
∑
i,j

〈~ui · ~uj〉

But, for i 6= j, 〈~ui · ~uj〉 = 〈~ui〉 · 〈~uj〉 = 0 since monomers are assumed independent in this model. For i = j,
〈~ui · ~uj〉 = 〈~u2

i 〉 = 1. We deduce

〈~R2
N 〉 = a2 ×N

The end-to-end length of the polymer is therefore ∼ a×
√
N .

Statistics

Beyond the length scales, it is interesting to get further insights into the statistics of the polymer, i.e., the
probability that the polymer is of a given length ~R.

Let us consider a 1-dimensional version of this problem, the 3D generalization is obvious. In 1D, the length
of the polymer is X = a

∑
i εi, where εi = ±1. We introduce N+ the number of steps in the forward direction

(εi > 0), and N− the number of steps in the forward direction (εi > 0). One can rewrite the previous result as

X = a(N+ −N−)

with N = N+ +N− the number of monomers.
The statistics follows from the simple combinatorics

p(X) =

(
N
N+

)
p
N+

0 (1− p0)N−
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with p0 the probability that the direction is positive. We will assume that p0 = 1/2 to simplify. Since one has
simply N+ = (N +X/a)/2 and N− = (N −X/a)/2 Then

p(X) =
N !(

N+X/a
2

)
!
(
N−X/a

2

)
!

(
1

2

)N

We introduce the reduced variable x = X/Na; one has for typical configurations that x� 1 (since x ∼ 1/
√
N).

Then using the Stirling formula to calculate log p(X), and expanding for small x, one obtains

p(X) = A exp

(
− X2

2Na

)
where the factor A is obtained by normalization: A = (2πNa2)−1/2.

Entropic forces

Let us consider that we fix the end-to-end length of the polymer X. This parameter therefore acts as a
’constraint’. We can then calculate the entropy S(X) as S = kB log Ω, where Ω is the number of configurations
for a given length X:

Ω =
N !

N+N−!
=

N !(
N+X/a

2

)
!
(
N−X/a

2

)
!

Using the previous results, we then immediatly deduce

S(X) = cst− kB
2Na2

X2

Since dS = 1
T dE −

F
T dX then, the corresponding thermodynamic force F is obtained as F = −T

(
∂S
∂X

)
E

, i.e.

F =
kBT

Na2
X

This shows that the polymer behaves as a spring with a stiffness of entropic origin: K = kBT
Na2 .

This points to the so-called ’entropic forces’. We will come back to this question in Chapter 6.
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Chapter 4

Canonical Ensemble.

The previous microcanonical ensemble corresponds to a situation where the system is insulated and the energy
is fixed. But in practice, systems exchange energy with their surroundings and it is usually more relevant
experimentally to fix the temperature. This corresponds to the N,V, T ensemble where the temperature,
number of particle and volume are fixed.

Also, as we will also show in this chapter, calculating the partition function in the canonical ensemble
prooves usually to be simpler than in the microcanonical ensemble (remember that results do not depend on
the thermodynamic ensemble in the thermodynamic limit).

4.1 Principles and canonical probabilities.

To model a system of the canonical ensemble, we consider a system S connected to
a huge reservoir R which, together, are isolated from the rest of the universe. Since
the reservoir is huge, we consider it always at equilibrium: indeed fluctuations in
S will negligibly influence the huge reservoir R. We set T0 to be the temperature
of the reservoir and the total energy is fixed:

Etot ≡ ES+R = ES + ER

Now we want to find what is the probability of a microstate s of the system S
(say, with an energy Es). We recall the main postulate of statistical physics:

In an isolated system all the microstates are equiprobable.

Then, since the total system S +R is in a microcanonical ensemble,

ps =
ΩR(ER = Etot − Es)

Ωtot

The term ΩR(ER = Etot−Es) counts the number of microstates of the reservoir R associated with the (single)
microstate s of the system S for that energy Es, so that the total energy of the R + S system is Etot. The
probability to find the system in a microstate s is then equal to the ratio between this number to the total
number of microstates of the S +R system.

The reservoir is supposed to be at equilibrium and we can thus rewrite :

ΩR(Etot − Es) = exp

[
SR
kB

(Etot − Es)
]

Now since S is much smaller than the reservoir R, then Es � Etot ∼ ER so we expand the entropy SR for small
ES to write:

SR(Etot − Es) ≈ SR(Etot)−
∂SR
∂E

∣∣∣∣∣
eq︸ ︷︷ ︸

1
T0

ES + · · ·

We then get the central result for the probability of a microstate s of the system S at temperature T0:

ps =
1

Z
exp

(
− Es
kBT0

)

27
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This is the Boltzmann-Gibbs distribution. The normalization of probability requires that:

Z =
∑
s

exp

(
− Es
kBT0

)

where the sum is over all microstates s of the system S; Z is the partition function for the canonical ensemble.

4.2 Canonical partition function and Free Energy.

The free energy is defined as F = E − TS with T = T0. We now show that F = −kBT logZ.
First we compute what is the probability that the system S has an energy E within dE, which we denote

p(E)dE. We are doing something similar to what was done previously for the micro-canonical ensemble. One
has to count all microstates corresponding to the energy Es. Then:

p(E)dE =
1

Z
e
− E
kBT0 ω(E)︸ ︷︷ ︸

# microstates of energyE

dE

ω counts the ’degeneracy’, i.e. the number of micro-states associated to a given energy. By definition of the
entropy, one has:

ω(E) = e
S(E)
kB

Plugging this back in, we get that:

p(E)dE =
1

Z
e
−E−T0S(E)

kBT0 dE and

∫
p(E)dE = 1

and we obtain:

Z =

∫
dEe

−E−T0S(E)
kBT0

Now as previously we are going to use the saddle-point method since we expect that the integral is dominated
by the maximum of the integrand. We accordingly calculate the maximum of the term in the exponential, i.e.
the minimum of

min
E

(E − T0S(E))

Let us introduce f(E) = E − T0S(E). Calculating the derivative with respect to E, we get:

0 =
∂f

∂E
= 1− T0

∂S

∂E

∣∣∣∣∣
E∗

= 1− T0

Ts
⇒ Ts = T0

Now we expand f(E) around its minimum as

f(E) = f(E∗) +��
��:0

f ′(E∗)(E − E∗) +
1

2
f ′′(E∗)(E − E∗)2 + . . .

Plugging this back in the integral, one gets:

Z =

∫
dE e

−E
∗−T0S(E∗)
kBT0 × e−

1
2
f′′(E∗)
kBT0

(E−E∗)2

= e
−E
∗−T0S(E∗)
kBT0

√
2πkBT0

f ′′(E∗)

Therefore, in the thermodynamic limit N →∞, we can deduce that:

− logZ =
(E − TS)

∣∣∣
eq

kBT0
+O(logN) ≈

(E − TS)
∣∣∣
eq

kBT0

Altogether one has

F = E − TS
∣∣∣
eq

= −kBT0 logZ

While in the microcanonical systems, we showed that the entropy is maximal at equilibirium, in the canonical
systems, the free energy F = E − T S is minimal at equilibrium.
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Note that the general definition of the partition function is

Z =
∑

microstates s

e
− Es
kBT

But for continuous (classical) systems we rather write:

Z =
1

N !

1

h3N

∫
dΓe

−H(Γ)
kBT

As for the microcanonical ensemble, the factorial term N ! stems from indiscernability and the term h−3N allows
discretizing the energy levels and allow counting.

4.3 Fluctuations and thermodynamics.

For now we have always looked at the peak of functions and neglecting the small variations around them. Let
us now estimates these fluctuations around equilibrim. From the previous computation we have :

p(E) ∝ e−
1

2kBT0
f ′′(E∗)(E−E∗)2

and one can calculate the second moment of the energy distribution 〈(∆E)2〉:

〈(∆E)2〉 =

∫
dE(E − E∗)2p(E) =

∫
dE(E − E∗)2e

− 1
2kBT0

f ′′(E∗)(E−E∗)2∫
dEe

− 1
2kBT0

f ′′(E∗)(E−E∗)2

In practice, we will often have to compute quantities of this form (moments of a gaussian distribution), and we
will use the general result:

〈x2〉 =

∫
dxe−αx

2

x2∫
dxe−αx2 =

− ∂
∂α

∫
dxe−αx

2∫
dxe−αx2 = − ∂

∂α
log

∫
dxe−αx

2

︸ ︷︷ ︸√
π
α

=
1

2α

Now if we apply this to our case we have x = E − E∗ and α = 1
2kBT0

f ′′(E∗). So we get that:

〈(∆E)2〉 = 〈(E − E∗)2〉 =
kBT0

f ′′(E∗)

It remains only to compute f ′′ and we have:

f ′′ =
∂2

∂E2
(E − T0S(E)) = 0− T0

∂2S

∂E2

∣∣∣∣∣
eq

= −T0
∂

∂E

(
1

T (E)

)
=

T0

T 2
eq

∂T

∂E

∣∣∣∣∣
eq

where Teq = T0

We introduce the heat capacity (at fixed volume):

Cv =
∂E

∂T

∣∣∣∣∣
eq,N,V

Then we get that:

〈∆E2〉 = kBT
2
0CV

Now to check the validity of our previous approximations in using the saddle-point approximation for the
partition function, we can calculate how peaked is the energy around its mean-value:

∆E

E
∼
√
〈∆E2〉
E

∼
√
kT 2CV
E

∼ 1√
N
→ 0

This validates therefore the previous derivations.
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Alternative method

Another way to derive the above results is to use the general probability of a microstate:

ps =
1

Z
e
− Es
kBT with Z =

∑
s

e
− Es
kBT

So we get for the mean energy 〈E〉 ≡ Ē:

Ē =
∑
s

Esps =
∑
s

Es
1

Z
e
− Es
kBT =

∑
s

1

Z

(
− ∂

∂β
e−βEs

)
=

1

Z
· − ∂

∂β

∑
s

e−βEs = − 1

Z

∂

∂β
Z

So we have that:

Ē = − ∂

∂β
logZ and F = −kBT logZ

So we can re-write this as:

Ē =
∂

∂β
(βF )

Now reminding the thermodynamic formula

F = E − TS ⇒ βF = βE − S

kB

one can write the previous equation as:

Ē = −T 2 ∂

∂T

(
F

T

)
since dβ = d

1

kBT
=

1

kB

−dT

T 2

Now looking at the fluctuations, and using the same method, we also get that:

Ē2 =
∑
s

E2
sps =

∑
s

E2
s

e−βEs

Z
=

1

Z

∂2

∂β2
Z

Putting the two results together we have that:

〈(E − Ē)2〉 = 〈E2〉 − 〈E〉2 =
1

Z

∂2Z

∂β2
−
(

1

Z

∂Z

∂β

)2

=
∂

∂β

(
1

Z

∂Z

∂β

)
which we can re-write as:

〈(E − Ē)2〉 =
∂2

∂β2
(−βF )

Now,

Ē = − 1

Z

∂Z

∂β
and 〈(E − Ē)2〉 = − ∂

∂β
Ē

So we get that:

〈(E − Ē)2〉 = kBT
2 ∂E

∂T
= kBT

2CV

Thermodynamics.

Let’s gather the various thermodynamics results. Remember that thermodynamics does fix the extensive quan-
tities, like the energy, to be equal to their average values.

In this chapter we introduced the free energy:

F = E − TS

We saw that the energy of the system has very small fluctuations around its mean value and it is obtained from
the free energy according to:

E = Ē = −T 2 ∂

∂T

(
F

T

)
The entropy can be expressed as:

S =
E − F
T

= −T ∂

∂T

(
F

T

)
− F

T
=
F

T
− ∂F

∂T
− F

T
= −∂F

∂T



4.4. THE PERFECT GAS. 31

Differential form.

The differential form of the energy is given by:

dE = TdS − PdV + µdN +
∑
α

FαdXα

Then since F = E − TS we also get that:

dF = dE − SdT − TdS = −SdT − PdV + µdN +
∑
α

FαdXα

And we have that:

µ =
∂F

∂N

∣∣∣∣∣
T,V,Xα

and P = −∂F
∂V

∣∣∣∣∣
N,T,Xα

and Fα =
∂F

∂Xα

∣∣∣∣∣
N,V,T,Xβ 6=α

4.4 The perfect gas.

4.4.1 Partition Function.

For a perfect gas, all interactions between particles are omitted/neglected and the hamiltonian reduces to

H =
∑
i

~pi
2

2m
+ 0

Then the (classical) partition function is then given by:

Z =
1

N !

1

h3N

∫
d~r1 · · · d ~rNd~p1 · · · d ~pNe−βH(~pi,~ri)

Since the Hamiltonian is independent of positions we immediately calculate the integral over positions to obtain:

Z =
1

N !

1

h3N
V N

∫
d~p1 · · · d ~pNe−β

∑
i
~pi

2

2m

Finally, the exponentials of kinetic terms do factorize and we get the same integral to a power of N , as:

Z =
1

N !

1

h3N
V N

(∫
d~p1e

−β ~p1
2

2m

)N
=

1

N !

1

h3N
V N (2πmkBT )

3/2

Once again we introduce the De Broglie wavelength:

λ =

√
h2

2πmkBT

And the perfect gas partition function takes the expression:

Z =
1

N !

(
V

λ3

)N
4.4.2 Thermodynamics.

We now check that this result is consistent with the standard thermodynamic theory of the perfect gas. First
the free energy is:

F = −kBT logZ = −kBT log

(
V N

N !λ3N

)
= −kBTN

(
log

V

λ3
− (logN − 1)

)
= kBTN(log ρλ3 − 1) where ρ =

N

V

We introduce the free energy per unit volume, f = F
V , which takes the following compact expression for the

perfect (ideal) gas :
fid = kBT

(
ρ log

(
ρλ3
)
− ρ
)
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The average energy is (omitting the Ē notation to simplify):

E = −T 2 ∂

∂T

(
F

T

)
= −NkBT 2 ∂

∂T

(
log ρλ3 − 1

)
Now we compute the derivative:

∂

∂T
log λ3 = − 3

2T

and deduce

E =
3

2
NkBT

Then the entropy is given by:

S = −∂F
∂T

∣∣∣∣∣
V,N

= −NkB(log ρλ3 − 1)−NkBT
∂

∂T
= −NkB(log ρλ3 − 1− 3

2
) = −NkB(log ρλ3 − 5

2
)

For the pressure we have:

P = −∂F
∂V

∣∣∣∣∣
T,N

= NkBT
∂

∂V

(
log ρλ3 − 1

)
=
N

V
kBT = ρkBT

Finally for the chemical potential we have:

µ =
∂F

∂N

∣∣∣∣∣
T,V

= kBT
∂

∂N

(
N log

N

V
λ3 −N

)
= kBT log ρλ3

Note that if we consider back the interactions of a system, as long as the interactions do not depend on velocity,
one has:

Z = Zideal · Zinteractions and F = Fid + Fint

4.5 Equipartition and consequences.

4.5.1 Kinetic energy

Imagine we have a Hamiltonian of the form:

H =
∑
i

1

2m
~pi

2 + V (~r1, · · · , ~rN )

Then the average of any kinetic term derives as:

〈 1

2m
p2

1,x〉 =

∫
d~r1 · · · d ~rNd~p1 · · · d ~pN 1

2

p2
1,x

m e
−
∑
i

1
2m

~pi
2+V ( ~r1,··· , ~rN )

kBT∫
d~r1 · · · d ~rNd~p1 · · · d ~pNe−

∑
i

1
2m

~pi
2+V ( ~r1,··· , ~rN )

kBT

=

∫
d~r1 · · · d ~rNe−βV (~r1,··· , ~rN )

∫
d~p1, · · · ,d ~pN 1

2mp
2
1,xe

−
∑
i

p2
i

2mkBT∫
d~r1, · · · ,d ~rNe−βV (~r1,··· , ~rN )

∫
d~p1 · · · d ~pNe−

∑
i

p2
i

2mkBT

=

∫
dp1,x

p2
1,x

2m e−β
p2
1,x
2m∫

dp1,xe−β
p
1,x2

2m

=
− ∂
∂β

∫
dp1,x exp

(
−β p

2
1,x

2m

)
∫

dp1,x exp
(
−β p

2
1,x

2m

)
= − ∂

∂β
log

∫
dp1,xe

−β
p2
1,x
2m︸ ︷︷ ︸√

2mπ
β

=
1

2β

So finally we obtain:

〈 1

2m
p2

1,x〉 =
1

2
kBT
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4.5.2 Generalization

This result can be generalized to any quadratic hamiltonian. Indeed the Hamiltonian takes the form:

H =
1

2
αq̇2 + V (q)

then one can show immediately that:

〈1
2
αq̇2〉 =

1

2
kBT

In fact this results is even generalizable to some Hamiltonian of the form:

H =
1

2
α(y)q̇2 + V (y, q)

In conclusion the take-away message is that each quadratic term averages to 1
2kBT , hence 1

2kBT per degree
of freedom for which the Hamiltonian has a quadratic dependence.

4.5.3 Calorific capacity

Perfect Gas.

In a perfect mono-atomic gas we previously had:

H =
∑
i

p2
i

2m
and E =

3

2
NkBT and CV =

3

2
NkB

Solid.

We model a solid as a lattice of atoms where every bond between atoms is a spring. Then we have 3 extra-
degrees of freedom per atom coming from the elasticity of the spring. So for each atom we have 6 degrees of
freedom, and each of these have a quadratic dependence in the Hamiltonian so by the previous reasoning we
get that:

Ē =
6

2
NkBT = 3NkBT and CV = 3NkB

Di-atomic gas.

We can model a di-atomic gas by each particle being two atoms connected by a spring. Then we have 3 degrees
of freedom from translation, 2 degrees of freedom from Euler’s angles and 2 degrees of freedom from the spring.
So in total we have 7N degrees of freedom that are quadratic in the Hamiltonian so we get:

E =
7

2
NkBT and CV =

7

2
NkB

4.6 Example: classic model of paramagnetism

We consider a simple model for a paramagnetic system. Each particle (with fixed position) has a magnetic
moment ~µc, and we neglect the interactions between the magnetic dipoles to consider only the interaction with
an extenally applied magntique field, ~B. The hamiltonian is simply:

H = −
∑
i

~µi · ~B

and the partition function is defined as:

Z =

∫
dΩ1

4π
· · · dΩN

4π
e
− 1
kBT
H

Note that we did not include the N ! term because here the particles are discernable, since they are each fixed
at a given position. Then we can re-write the equation above as:

Z = zN1 with z1 =

∫
dΩ1

4π
e
~µ1·~B
kBT =

∫
sin θdθdϕ

4π
e
µB cos θ
kBT =

1

2

∫ 1

−1

dxe
µB
kBT

x
=
kBT

µB
sinh

(
µB

kBT

)
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Then the average magnetic moment is

〈µ1,z〉 =

∫
dΩ
4π µ cos θe

µB
kBT

cos θ∫
dΩ
4π e

µB
kBT

cos θ
= µ

∫
sin θdθ cos θ exp

(
µB
kB
T cos θ

)
∫

sin θdθ exp
(
µB
kBT

cos θ
) = µ

∫ 1

−1
dxxe

µB
kBT

x∫ 1

−1
dxe

µB
kBT

x

Integrating by parts we obtain that:

〈µz〉 = µ
cosh µB

kBT
− kBT

µB sinh µB
kBT

sinh µB
kBT

= µL(
µB

kBT
)

where we introduced Langevin’s function:

L(x) =
1

tanhx
− 1

x

One of the properties of Langevin’s function that for x� 1 we have L(x) ≈ x
3 , so for small magnetic interactions

we have:

〈µz〉 =
µ2

3kBT
B and χ =

µ2

3kBT
is called the magnetic susceptibility

Note that this very simple model forgets about interactions. We will come back to the role of interactions in a
later chapter and show that this leads to phase transition of the material and symmetry breaking.



Chapter 5

Grand canonical ensemble.

We now introduce a further Gibbs ensemble, in which the system under consideration exchanges both energy
and particles with the external world. This corresponds to the µ, V, T ensemble where the temperature, chemical
potential and volume are fixed. We will define the associated partition function and thermodynamic potential.

5.1 Principles and grand canonical partition function.

In the grand canonical ensemble we allow for an exchange of energy E and particles
N between the system S and the reservoir R. The total system S +R is isolated.
The probability of a microstate s derives from the same analysis as done for the
canonical ensemble. In the present case, both the total energy

Etot ≡ ES+R = ES + ER

and total number of particles
Ntot ≡ NS+R = NS +NR

are fixed. Now we want to find what is the probability of a microstate s of the system S (say, with an energy
Es and number of particles Ns). Then, since the total system S + R is in a microcanonical ensemble, and the
probability of a microstate s of the system S is accordingly

ps =
ΩR(ER = Etot − Es, NR = Ntot −Ns)

Ωtot

since all the microstates of the isolated system are equiprobable.
The term ΩR(ER = Etot−Es, NR = NtotNs) counts the number of microstates of the reservoir R associated

with the (single) microstate s of the system S for that energy Es and number of particles Ns, such that the
total energy of the R + S system is Etot and total number of particles is Ntot. The probability to find the
system in a microstate s is then equal to the ratio between this number to the total number of microstates of
the S +R system.

Now since the reservoir is supposed to be at equilibrium, we can rewrite :

ΩR(Etot − Es, Ntot −Ns) = exp

[
SR
kB

(Etot − Es, Ntot −Ns)
]

Now since S is much smaller than the reservoir R, then Es � Etot ∼ ER and Ns � Ntot, and we expand the
entropy SR for small Es and small Ns to write:

SR(Etot − Es, Ntot −Ns) ≈ SR(Etot, Ntot)−
∂SR
∂E

∣∣∣∣∣
eq︸ ︷︷ ︸

1
T0

Es −
∂SR
∂N

∣∣∣∣∣
eq︸ ︷︷ ︸

−µ0
T0

Ns · · ·

where T0 and µ0 are the temperature and chemical potential of the reservoir, respectively. In the following we
drop the label “0” to simplify notations. We then get the central result for the probability of a microstate s of
the system S at temperature T :

ps =
e

1
kBT

(µNs−Es)

Θ

35
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Here Θ is the grand canonical partition function which is defined as:

Θ(µ, V, T ) =
∑

microstates s

e
1

kBT
(µNs−Es)

An alternative way of writing the grand canonical partition function is to sum over the number of particles
of the system S:

Θ =
∑
s

e
1

kBT
(µNs−Es) =

∑
N

∑
s(N)

e
1

kBT
(µNs−Es) =

∑
N

e
µN
kBT

∑
s(N)

e
− Es
kBT

︸ ︷︷ ︸
ZN

Θ(µ, V, T ) =

+∞∑
N=0

eβµNZN =

+∞∑
N=0

eβ(µN−FN )

where FN = −kBT logZN the free energy of the system S calculated for a fixed number N of particles.

5.2 Grand Potential.

We define the grand potential as:
Ω(µ, V, T ) = −kBT log Θ

(do not confuse the notation Ω(µ, V, T ) with the number of micro-states).
We now show that

Ω(µ, V, T ) = F − µN = −p(µ, T )× V

Expression of Ω.

The probability that the system S has N particles is

pN =
eβµNZN

Θ

Normalization requires that
∑+∞
N=1 pN = 1, showing again that Θ =

∑+∞
N=1 e

βµNZN , as obtained above.
We can see immediately that pN is very spiked to its average value, i.e ∆N � N̄ . Then, as done previously

we use the saddle point method to calculate this serie. First we re-write:

Θ =
∑
N

eβµNZN =
∑
N

eβ(µN−FN )

Writing the sum as a continuous integral, we rewrite it as

Θ =

∫
dN eβ(µN−FN )

The maximum of the exponential is obtained for:

∂

∂N
= 0⇔ µ =

∂F

∂N

∣∣∣∣∣
N∗

And we write:

[µN − FN ](N) ≈ µN∗ − FN∗ +
���

���
���

�:0
∂

∂N
(µN − FN )

∣∣∣∣∣
N∗

(N −N∗) +
1

2

∂2

∂N2
(µN − FN )

∣∣∣∣∣
N∗

(N −N∗)2 + · · ·

Then plugging this back in the integral we have:

Θ ≈
∫

dNeβ(µN∗−FN∗ )e
β
2
∂2

∂N2 (µN−FN )
∣∣
N∗

(N−N∗)2

= eβ(µN∗−FN∗ )

√√√√ 2πkBT

− ∂2

∂N2 (µN − FN )
∣∣∣
N∗︸ ︷︷ ︸

∼
√
N

Hence we obtain the result:
Ω = −kBT log Θ ≈ F − µN

This result can be further simplified to Ω = −pV . To do so, we first start by deriving the Gibbs-Duhem
relation.
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Relation of Gibbs-Duhem.

The relation of Gibbs-Duhem says that µ, P, T are not independent variables. We already showed:

dF = −SdT − PdV + µdN, µ =
∂F

∂N

∣∣∣∣∣
T,V

, P = −∂F
∂V

∣∣∣∣∣
T,N

Since F is an extensive variable we know that we can write it as:

F (N,V, T ) = V f(
N

V
, T ) = V f(ρ, T )

Then:

µ =
∂F

∂N

∣∣∣∣∣
V,T

= V
1

V

∂f

∂ρ

∣∣∣∣∣
T

=
∂f

∂ρ

∣∣∣∣∣
T

And similarly:

P = −∂F
∂V

∣∣∣∣∣
N,T

= − ∂

∂V

[
V f(

N

V
, T )

]
= −f(ρ, T )−V ∂

∂V
f(
N

V
, T )

∣∣∣∣∣
T,N

= −f−V ∂

∂ρ
f(ρ, T )

∣∣∣∣∣
T

∂ρ

∂V

∣∣∣∣∣
T

= −f+ρ
∂f

∂ρ

∣∣∣∣∣
T

So we can re-write this was:

P = −f + µρ therefore PV = −F + µN

Therefore going back to our previous result we get that:

Ω = F − µN = −pV

We now introduce the free enthalphy which is given by:

G = F + PV = µN so µ =
G

N

Differential version of Gibbs-Duhem.

To write the Gibbs-Duhem in differential form, we start from

dF = −SdT − PdV + µdN

and we do a Legendre transformation to get:

dG = −SdT + V dρ+ µdN and we have dG = d(µN) = Ndµ+ µdN

So finally we get the following relation:

Ndµ = −SdT + V dP

Average number of particles.

With T fixed the previous equation can be written as:

N̄ = V
∂P

∂µ

∣∣∣∣∣
T

= −∂Ω

∂µ

∣∣∣∣∣
T,V

5.3 Alternative calculation of the grand canonical partition function

We consider two volumes which can exchange particles. The temperature is fixed to T and the volumes and
number of each container are V1, N1 and V2N2; V = V1 + V2 is the total volume and N = N1 + N2 is the
total number of particles (both fixed). The total system is thus treated in the canonical ensemble but we are
interested in the statistics and grand partition function of the container 1. We will assume in the calculation
that the container 2 is much larger than the container 1.
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The partition function for the overall system (with fixed N) is

Z(N,V, T ) =
1

h3NN !
×
N1=N∑
N1=0

N !

N1!N2!

∫
dΓ1

∫
dΓ2 e

−βH(Γ1)+H(Γ2)

=

N1=N∑
N1=0

Z1(N1, V1, T )× Z2(N2, V2, T ) (5.1)

Note that the factor N !/N1!N2! in the first line can be interpreted as the number of combinations to distribute
N1 particles in the container 1 and N2 particles in the container 2, given N = N1 +N2. Hence we deduce that

N1=N∑
N1=0

Z1(N1, V1, T )× Z2(N2, V2, T )

ZN (N,V, T )
= 1 (5.2)

Introducing the free energy F (N,V, T ) = −kBT logZN , one has

Z2

ZN
=
Z(N2, V2, T )

Z(N,V, T )
=

exp[−βF (N −N1, V − V1, T )]

exp[−βF (N,V, T )]
(5.3)

Note that we implicitly assume that the two systems are made of identical particles and same hamiltonian, so
that the partition functions are identical (but for different number of particles and volume).

Now assuming that the container 2 is much larger than the container 1 and N1 � N , one can write

F (N −N1, V − V1, T ) ' F (N,V, T )− ∂F

∂N
×N1 −

∂F

∂V
V1 (5.4)

Using ∂F
∂N

∣∣
V,T

= µ and ∂F
∂V

∣∣
V,T

= −P , this gives

N1=N∑
N1=0

Z1(N1, V1, T )× e−β[−µN1+PV1] = 1 (5.5)

so that
N1=N∑
N1=0

Z1(N1, V1, T )× e
µN1
kBT = e

PV1
kBT (5.6)

One recognizes the grand partition function for the system 1 which is defined here as

Θ1(µ, V1, T ) =

N∑
N1=0

eβµN1Z(N1, V1, T )

so that

Θ1(µ, V1, T ) = e
PV1
kBT (5.7)

and the grand potential Ω = −kBT log Θ reduces to

Ω1 = −P V1 (5.8)

5.4 Fluctuations and statistics.

We showed previously that:

pN ≈
1

Θ
exp[β(µN∗ − FN∗)] exp

[
1

2kBT

∂2

∂N2
(µN − FN )

∣∣∣∣∣
N∗

(N −N∗)2

]

From this we can deduce that:

〈(N −N∗)2〉 =
kBT

− ∂2

∂N2 (µN − FN )
∣∣∣
N∗

And we can re-write:

− ∂2

∂N2
=
∂2FN
∂N2

∣∣∣∣∣
T,V

=
∂

∂N
µ

∣∣∣∣∣
T,V

with in the last equality µ =
∂F

∂N
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Using Gibbs-Duhem with fixed temperature, one gets

Ndµ = V dP ⇒ ∂µ

∂N

∣∣∣∣∣
T

=
V

N

∂P

∂N

∣∣∣∣∣
T

then
∂2F

∂N2
=

∂µ

∂N
|T,V =

V

N

∂P

∂N

∣∣∣∣∣
T

We define the compressibility factor as:

χT =
1

V

∂V

∂P

∣∣∣∣∣
T

Then:
∂P

∂N
=
∂P

∂ρ

∂ρ

∂N
=

1

V

∂P

∂ρ
and

∂P

∂V
=
∂P

∂ρ

∂ρ

∂V
= − N

V 2

∂P

∂ρ

so that
∂P

∂N
=

1

V

−V 2

N

∂P

∂V
= −V

N

∂P

∂V
=

1

NχT

and
∂2F

∂N2

∣∣∣∣∣
T,V

=
V

N

∂P

∂N

∣∣∣∣∣
T

=
V

N2χT

Altogether we can re-write the result above as:

〈(N −N∗)2〉 = NρχT kBT

This is a main result that contains a lot of physics. First of all one may note
that ∆N =

√
〈(N −N∗)2〉 ∼

√
N so that ∆N

N ∼ 1√
N
→ 0. This relationship

also demonstrates that χT must be positive. This is what is called a condition of
stability. The states that violate this condition are unstable. Furthermore, if we
look at a system close to the critical point where the transition in between liquid
and gas stops (meaning that we cannot really differentiate our system as a liquid

or a solid) then ∂P
∂V

(C)→ 0 so χT
(C)→ ∞ therefore:

〈(N −N∗)2〉 (C)→ ∞

So we see that the fluctuations diverge at a critical point.

5.5 Alternative Approach (again).

The probability to find the system with N particles is

pN =
eβ(µN−FN )

Θ

and by definition

N̄ = 〈N〉 =
∑
N

NpN =
∑
N

N
eβ(µN−FN )

Θ

So we can re-write:

N̄ =
1

βΘ

∂

∂µ

∑
N

eβ(µN−FN )

︸ ︷︷ ︸
Θ

=
kBT

Θ

∂Θ

∂µ
= kBT

∂

∂µ
log Θ

Therefore

N̄ = − ∂

∂µ
Ω where Ω = −kBT log Ω

Similarly we have that:

〈N2〉 =
∑
N

N2pN =
1

β2Θ

∂2

∂µ2
Θ

So we get that:

〈(N −N∗)2〉 = 〈N2〉 − 〈N〉2 = (kT )2

[
1

Θ

∂2Θ

∂µ2
− 1

Θ2

(
∂θ

∂µ

)2
]

= (kBT )2 ∂

∂µ

(
1

Θ

∂Θ

∂µ

)
= kBT

∂2

∂µ2
Ω = kBT

∂N̄

∂µ

This is the same result as above.
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5.6 The perfect gas in the grand canonical ensemble

In a system with no interaction we have:

Θ =
∑
s

e
µNs
kBT
− Es
kBT =

∑
N

eβµNZN

We already calculated ZN for the perfect gas so we know:

ZN =
1

N !

(
V

λ3

)N
where λ =

√
h2

2πmkBT

So we get that:

Θ =
∑
N

eβµN · 1

N !

(
V

λ3

)N
=
∑
N

=
1

N !

(
V eβµ

λ3

)N
= exp

(
V eβµ

λ3

)
Which gives:

Ω = −kBT log Θ = −kBT
V

λ3
eβµ

Pressure.

We know that Ω = −PV so we get immediately that:

P (µ, T ) =
kBT

λ3
eβµ

Number of particles.

We have that:

N = −∂Ω

∂µ
=
V

λ3
eβµ

So:

ρ(T, µ) =
N

V
=
eβµ

λ3

Note that we obtain results that are completely equivalent to all the results obtained in the canonical ensemble.

5.7 Example: Adsorption on a surface.

We consider a situation where molecules adsorb on a surface. The process is modelled using a simplified view
where the surface consists of Ntot sites of adsorption, containing 0 or 1 molecule at most, and the adsorption
energy of one molecule is fixed to ε0. We assume that the atmosphere is a reservoir of molecules so that their
chemical potential is fixed to the value µ.

We introduce Ntot variables ni which will be equal to 1 if the exist a particle
in the site on the surface i and 0 otherwise. For a given microstate s = {ni}, the
energy of the system is:

Es =
∑
i

niε0, and Ns =
∑
i

ni

Now we can follow two routes to obtain the physical properties of the system,
based on the two expressions of the partition function:

Θ =
∑
s

eβ(µNs−Es) and Θ =
∑
N

eβµNZN

Method 1: Following the first description, i.e. a summation over microstates, we can write:

Θ =
∑
s

eβ(µNs−Es) =
∑

{ni=0,1}

eβµ(
∑
i ni−

∑
i niε0) =

1∑
n1=0

1∑
n2=0

· · ·
1∑

nNtot=0

∏
i

eβ(µ−ε0)ni

The key point is that the sum factorizes because all sites are independent, so that the partition function can be
rewritten as

Θ =

1∑
n1=0

eβ(µ−ε0)n1

1∑
n2=0

eβ(µ−ε0)n2 · · ·
1∑

nNtot=0

eβ(µ−ε0)nNtot
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This can be rewritten in a compact form as

Θ =
∏
i

∑
ni=0,1

eβ(µ−ε0)ni =
∏
i

(1 + eβ(µ−ε0))

And we arrive at the final result:

Θ = (1 + eβ(µ−ε0))Ntot

Method 2: Alternatively we can calculate the partition function by summing the free energy over the number
of particles, as

Θ =
∑
N

eβµNZN

And by definition we have:

ZN =
∑

{s|Nfixed}

e−βEs = e−βNε0 ×# number of ways to adsorb N particles over the Ntot sites

In terms of combinatorics, we have the simple result for the number of ways to choose N sites among Ntot:

# nb of ways =

(
Ntot

N

)
=

Ntot!

N !(Ntot −N)!

So we have:

Θ =
∑
N

(
Ntot

N

)
eβ(µ−ε0)N × 1Ntot−N =

(
1 + eβ(µ−ε0)

)Ntot

So we indeed get the same result. Note that the second method is easier so long as we can calculate the
expression of ZN .

Now, we can deduce the thermodynamics from the partition function. The average number of adsorbed
particles is

N̄ = −∂Ω

∂µ
= NtotkBT

∂

∂µ
log
(

1 + eβ(µ−ε0
)

so that we obtain the fraction of adsorbed sites on the surface

Φ =
N̄

Ntot
= kBT

βeβ(µ−ε0)

1 + eβ(µ−ε0)
=

1

1 + eβ(ε0−µ)

ϵ

5 10 15 20
μ

0.2

0.4

0.6

0.8

1.0

Φ

5.8 Conclusion on ensembles.

We can then summarize the different results for the various ensembles with the following table:

Conditions Ensemble Partition function Potential
N,V,E Micro Canonical Ω =

∑
s δEs,E = 1

N !
1
h3N

∫
E≤H(−≤E+∆E

dΓ S = kB log Ω = S(E, V,N)

N,V, T Canonical Z =
∑
s exp

(
− Es
kBT

)
F = −kBT logZ = F (N,V, T ) = E − TS

µ, V, T Grand Canonical Θ =
∑
s exp

(
µNs−Es
kBT

)
Ω = −kBT log Θ = Ω(µ, V, T ) = F − µN = −P (µ, T )V
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Note that in the various derivation of these results, we followed the saddle-point method to focus on the states
of highest probability. Accordingly that we implicitly wrote the following relations:

F = min
E

(E − TS(E, V,N)) , Ω = min
N

(F (N,V, T )− µN) , G = min
V

(F (N,V, T ) + PV )

The interpretation is quite natural in terms of constraints: for each ensemble, one might consider a number of
states where we constrain the value of an extensive quantity: the energy, number of particles or volume. Then,
when this constraint is relaxed, the global thermodynamic equilibrium is obtained by calculating the minimum
of the corresponding functional over the constraint.

One may construct of course other ensembles. For example, an interesting ensemble is the isobaric ensemble
(N,P, T ), for which the microstate probability is

ps =
1

Y
e
−
(
Es
kBT

+ PVs
kBT

)

and the partition functiion is

Y =
∑
s

e
−Es+PVs

kBT =
∑
V

e
− PV
kBT Z(N,V, T ).

The corresponding potential is the Gibbs enthalpy G = −kBT log Y = F + PV = minV (F (N,V, T ) + PV ).
Furthermore remember that the Gibbs Duhem equation shows that F +PV = µN , so that G =

∑
species i µiNi.



Chapter 6

Ideal systems and entropic forces.

Ideal systems are systems in which the interactions are negligeable (perfect gas, ideal polymers, etc.). Hence,
from a naive point of view, one would not expect any complex phenomena to emerge in such systems. However,
entropic effects introduce much subtleties in spite of the absence of interactions and can lead to the building up
of entropic forces. A good example was given above by the ideal polymer: we have shown that in spite of the
absence of any interaction, the polymer exhibit an entropic stiffness proportional to the thermal energy kBT
K = kBT

Na2 . Similiar effects occurs in many situations. One prominent example is osmosis and osmotic forces1

In general, maximization of entropy can lead to mechanical restoring forces: indeed, reducing the degrees of
freedom of a system by external constraint generate force to re-establish a larger exploration of the phase space.
These are entropic forces, that we want to illustrate by a few examples in this chapter.

6.1 Osmosis.

solute

semi- permeable 

membrane

hydrostatic

pressure drop

relaxation

Osmosis is striking because of its simplicity, subtlety and consequences. The
prototypical configuration to highlight osmosis is the following: two solutions,
one with fresh water and one with salty water (say, NaCl), are separated by a
semi-permeable membrane, which lets water pass but not salt. Starting from this
configuration, the fresh water will start moving to the salty water side, trying to
balance the concentration on both sides in order to reach equilibrium. To stop
this flux we could add a piston to the right hand side that would add a pressure
of

∆Π = kBT∆Csolution

where Csolution is the total ions concentration (which is here twice the salt con-
centration since the salt solutions contains both sodium and chlorine salts). This is the osmotic pressure and
this formula is called the van ’t Hoff formula, which we will demonstrate below. It is of pure entropic origin.

To give an idea of the orders of magnitude, if we have a salinity contrast of 1 mole of salt between the two
reservoirs, we get an osmotic pressure of ∆Π = 48bar ! This is huge and corresponds to the hydrostatic pressure
∼ 500m below the level of the sea (or equivalently that of a dam 500m high).

We will now explore more thoroughly this phenomenon and demonstrate more specifically the van ’t Hoff
formula using statistical physics. We assume to simplify that we are using ideal molecules (which water is not),
but the principles are general. We consider N1 molecules of type 1 and N2 molecules of type 2 and we neglect
interactions. For now we fix the the volume and the temperature. Since the two systems are independent the
partition function is simply the product of the two partition functions::

Z(N1, N2, V, T ) =
1

N !

(
V

λ3
T

)N1 1

N2!

(
V

λ3
T

)N2

Intestingly we can rewrite this expression in a more transparent way;

Z(N1, N2, V, T ) =
1

N !

(
V

λ3
T

)N
N !

N1!N2!
≡ Zid(N,V, T ) · Zmix(N1, N2)

where

Zid =
1

N !

(
V

λ3
T

)N
, and Zmix =

N !

N1!N2!
=

(
N
N1

)
1See. e.g. Osmosis, from molecular insights to large scale applications, S. Marbach and L. Bocquet, Chemical Society Reviews

48, 3102-3144 (2019); https://www.phys.ens.fr/∼lbocquet/172article.pdf
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This highlights the combination of the ideal term (as if the systems 1 and 2 would be identical) and the mixing
term. The free energy thus takes the form

F (N1, N2, V, T ) = Fid(N,V, T ) + Fmix(N1, N2, T )

where

Fid(N,V, T ) = −kBT logZid = −kBT log

(
1

N !

(
V

λ3
T

)N)
, and Fmix(N1, N2, T ) = −kBT logZmix = −kBT log

(
N !

N1!N2!

)
Using the Stirling formula, the mixing term rewrites

Fmix(N1, N2, T ) = −kBT (N logN −N −N1 logN1 +N1 −N2 logN2 +N2) = kBTN(x1 log x1 + x2 log x2)

where:

xi =
Ni

N1 +N2
and x1 + x2 = 1

is the molar fraction.
Let us come back to the situation above in which two systems with different concentrations of solute are

put in contact. In this configuration, the solvent is in chemical equilibrium across the semi-permeable membane
(since it can be exchanged across the membrane), but not the solute since the membrane is impermeable to it.
To write chemical equilibrium of the ’solvent’ (here labelled as ’1’), we first calculate the chemical potential,
µ(T, P, x1). Several routes are possible and, for illustration, we choose here to first calculate the Gibbs-Free
energy, defined as: G = minV (F (N1, N2, V, T ) + PV ).

The minimum of F (N1, N2, V, T )+PV versus V leads to the condition ∂F
∂V +P = 0, which defines the volume

versus the imposed pressure P . Since Fmix is independent of V we obtain:

∂Fid + Fmix

∂V
=
∂Fid

∂V
= −P ⇒ kBT

V
N = P ⇒ V =

NkBT

P

The Gibbs enthalpy thus takes the expresion :

G = Fid

(
N1, N2, V =

NKBT

P
, T

)
+ P × NkBT

P
+ Fmix(N1, N2, T )

so that

G = NkBT log

(
P

kBT
λ3
T

)
︸ ︷︷ ︸

G0(T,P,N)

+NkBT (x1 log x1 + x2 log x2)

Here we supposed that the two systems were ideal but more generally we can write the Gibbs enthalpy as:

G(T, P,N1, N2) = G0(T, P,N) +Gmix(N1, N2, T )

and for dilute solutions of the specie ’2’ (N2 � N1), one expects G0(T, P,N) ' N1µ
0
1(T, P ) +N2µ

0
2(T, P ).

The chemical potentials are defined as

µi(T, P, xs) =
∂G

∂Ni

∣∣∣∣∣
Nj 6=i,T,P

Now to make the link with our initial problem more transparent, we write N1 ≡ Nw the number of molecules
of water and N2 ≡ Ns the number of solute molecules, assuming further that Ns � Nw. In the latter limit, G
simplifies to

G ' G0(T, P,Ns +Nw) + kBT

(
Ns log

Ns
Nw
−Ns

)
and the water chemical potential thus writes

µw(T, P, xs) =
∂G

∂Nw

∣∣∣∣∣
Ns,T,P

= µ0(T, P )− kBT
Ns
Nw
≈ µ0(T, P )− kBTxs

Equilibrium between the two reservoirs can be reached only if one applies an excess pressure on the ’salty’
side, in order to avoid the flux of water from the fresh water side. The pressure is therefore not the same on
both sides. On the fresh water side (no salt), we have therefore xs = 0 and the pressure is P ; on the salty water
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side, the salt fraction is xs = Ns/Nw and the pressure is P + ∆Π. Thermodynamic equilbrium imposes that
the chemical of water is equal on both sides, so that:

µw(T, P, xs = 0) = µw(T, P + ∆Π, xs)⇔ µ0(T, P ) = µ0(T, P + ∆Π)− kBTxs

For small xs we can expand the expression in ∆Π using

µw(T, P + ∆Π)− µw(T, P ) =
∂µw
∂P

∆Π

Using the Gibbs-Duhem equation we have that Ndµ = V dP so that ∂µ
∂P = V

Nw
. Inserting this result into the

previous equation leads to the expression for the osmotic pressure ∆Π

∆Π = kBT
Ns
V

= kBTCs

This concludes the proof of the van ’t Hoff equation.

Alternative demonstration.

Another way to approach the problem is to write a force balance. One thing to note is that the semi-permeable
membrane, though crucial to the problem, disappears in the final van ’t Hoff equation. So we can simplify the
mathematical description of the membrane and replace it by a simple potential barrier Us(x). This potential does
not act on water but only on the salt molecules, and it is peaked at x = 0 with a maximal value maxUs � kBT ,
so that it repels strongly the salt molecules.

Now in the reservoir containing the salt, we write Boltzmann’s law for salt particles in the presence of the
potential to obtain

cs(x) = Cs︸︷︷︸
x=+∞

exp

(
−Us(x)

kBT

)
We can now calculate the force due to the filter and acting on the fluid (water+salt). The barrier acts on
the salt molecules but due to action-reaction principle, this force acts on the fluid globally. This force can be
decomposed as

F

A
=
∑
salt

fi︸︷︷︸
force on a molecule of salt

=
∑
salt

(
−∂Us
∂x

)
Which we can re-write as:

F

A
=

∫
dx cs(x)×

(
−∂Us
∂x

)
=

∫
dxCse

−Us(x)
kBT (−∂xUs) =

∫
dxCskBT∂xe

−Us(x)
kBT = kBTCs

(
e
−Us(∞)

kBT︸ ︷︷ ︸
1

− e−
Us(0)
kBT︸ ︷︷ ︸
0

)

So we finally get that:
F

A
= ∆Π = kBTCs

We see here two different perspectives for osmotic forces. The first is to consider it as a thermodynamic
equilibrium condition for the solvent, which has to equilibrate its chemical potential shifted by the salt : the
only solution is to modulate the pressure. The second perspective is merely mechanical and shows that the
osmotic force is simply the ’push’ due to the membrane acting on the fluid to repel the salt (to avoid the crossing
of the solute).

6.2 Depletion forces.

Depletion forces are entropic forces which emerge in mixtures of colloidal particles
with different sizes. To be more specific, let us consider a system containing a
suspension of ’large’ and ’small’ particles, typically in experiments experiments
are performed with suspensions of colloids (∼ 1µm in size) and much smaller
polymers, all suspended in a solvent, water or else. We assume that the only
interaction between particles is the exclusion originating in their hard cores. What
is observed is that the large particle do attract each other, in spite of no direct
attractive interaction put in. This is a signature of depletion, entropic forces,
originating in the ’excluded volume’ around particles.

Let us denote as R the radius of the colloids and Rg the radius of the polymers
(R � Rg). Now if we consider a single, isolated colloid surrounded by polymer,
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we see that polymers are excluded from a spherical volume around the colloid.
Quantitatively the excluded volume for the polymer is V 0

exl = π
6 (2(R+Rg))

3
=

π
6D

3. Now if we consider two colloids which arre far apart (as on the top figure
above), we simply add the excluded volumes so that:

Vaccessible = V − 2V 0
excluded

But now, let us consider a situation where the colloid are near enough that a polymer cannot enter in the
space between the two colloids (see figure). Then there is an overlap in the exclusion volumes induced by each
colloid, so that Vexcl < 2V 0

excl.

Quantitatively, the excluded volume follows from simple geometry. If we consider two colloids which are
separated by a distance h, then one can estimates that

Vexcl = 2× π

6
D3 − Voverlap = 2

π6D3 − π

3
((R+Rg)− (R+

h

2
)︸ ︷︷ ︸

d=Rg−h2

)2(3(R+Rg)− d)


This can be re-written as:

Vexcl =
πD3

6

(
1 +

3

2

r

D
− 1

2

( r
D

)2
)
, with r = 2R+ h and D = 2(R+Rg)

Now, how does this result translate into an interaction force between the two colloids ? The physics at play
is clear: if the colloid are left free, reducing their distance increase the free volume for the polymers and the
polymer entropy increases accordingly. Hence there should be a force driving the colloids together.

Let us therefore assume that the colloids are fixed and we study the phase space of polymers. The
free/accessible volume for the polymers is

Vaccessible = Vfree = V − Vexcl(r)

So the partition function for the polymers in the remaining volume Vfree is:

Z =
1

N !

(
V − Vexcl(r)

λ3
T

)Np
The potential is given by F = −kBT logZ and the thermodynamic force is:

F = −∂F
∂r

= kBTNp
∂

∂r
log(V − Vexcl(r)) = kBT

Np
V − Vexcl

×
(
− ∂

∂r
Vexcl(r)

)
If we write cp =

Np
V−Vexcl

the polymer concentration, we get:

F = kBTcp

(
−∂Vexcl

∂r

)
with the expression of Vexcl(r) given above. Now we saw earlier that for r > D we have that Vexcl = 2V 0

excl

which is a constant while for r < D the exluded volume will decrease (i.e. the function is increasing). Therefore
this shows that the force is going to be 0 when r > D and negative (i.e. attractive) when r < D. The physical
understanding of this is that when the colloids are closer together the phase space of the polymers becomes
bigger and therefore the the entropy increases. This is another example of an entropic force. Such effects play
an essential role in colloidal systems and in Nature.

6.3 Forces induced by thermal fluctuations.

In line with previous examples, we are interested in forces induced by restrictions on the phase space. Here
we discuss forces induced by space limitations on fluctuations. There are three main configurations: Casimir -
Fisher-De Gennes - Helfrisch, we will focus specifically on Helfrisch-type of forces, with a simplified description,
altough capturing the main ingredients.
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Casimir

The Casimir forces caracterize the fluctuations of, for example, an electromagnetic field in between two conduct-
ing plates separated by a distance D in vaccum. Modes are quantified by the confinement, as a trivial calculation
shows. But Casimir and many others showed that this leads to an attractive force due to the fluctuations of
the electromagnetic field:

F

A
=
−π2

240

~c
D4

This is clearly a quantum effect.

’Critical’ forces - Fisher-De Gennes.

De Gennes and Fischer showed later that a similar type of fluctuation-induced forces occured in confined fluids
close to a critical point For more detail one can go see the original paper by de Gennes and Fischer Comptes
Rendus Academie des Sciences (1978); this effect was evidenced experimentally only recently, see C. Bechinger
et al., Nature 2007. A fluctuation induced (attractive) force builds up between the confining surfaces, with
expression

F

A
∼ −kBT

D3

This is an entropic force, as highlighted by the kBT amplitude.

Helfrisch forces.

Helfrisch studies a superposition of membranes separated by a distance D, showing that entropic effects leads
to a repulsive force, in the form:

F

A
∝ (kBT )2

κD3

where κ is the bending rigidity of the membrane.
The principle is that an elastic membrane will be able to explore some configurations of its phase space

thanks to the ambient temperature, having a characteristic height 〈h2〉free. When we confine the membrane in
a well of width D such that D2 < 〈h2〉free , i.e. we apply a corresponding constraint, the membrane will be
forced out to fit into the confining space (so that in the end 〈h2〉confined ≈ D2). Hence the system will therefore
apply a force that will tend to go back to equilibrium. So overall we expect to find a repulsive (entropic) force
in between the membranes.

Simplified Model.

The general calculation is somewhat cumbersome, so we will make a simplifying analysis which captures the
main physical ingredients. The steps are the following. First, instead of a real elastic membrane, we will
consider a 1D elastic string. Second we will put this string into a (parabolic) confining potential which will
mimick the confinement of width D and we will explore its fluctuations in this confined situation. We will make
a translation between the two situations. And we will finally calculate the free energy in this confined situation.

We start by considering that the system is characterized by the following hamiltonian defined on a lattice:

H =
∑
i

1

2
k̃(hi+1 − hi)2

︸ ︷︷ ︸
string energy

+ V (h)︸ ︷︷ ︸
confining constaint

and we take V (h) =
∑
i

1

2
K̃h2

i

where {hi} is the height of the string at the point x = i × a with a a lattice spacing. The Hamiltonian is
therefore a function of all hi, H(h1, · · · , hN ) ≡ H({h}) and we call such ’function of function’ a functional. We
will consider equivalently the lattice (discrete) model and its the continous version using the equivalence

H({h}) =
∑
i

1

2
k̃(hi+1 − hi)2 +

1

2
K̃h2

i and
∑
i

=

∫
dx

a

so that

H({h}) =

∫ L

0

dx

[
1

2
k(∇h)2 +

1

2
Kh2

]
with ∇ =

d

dx

where a is the lattice size in the discrete case and L its length.
The probability of finding the string in a given state is given by the canonical probability:

p({h}) ≡ p(h1, · · · , hN ) ∝ exp

[
− 1

kBT
H({h})

]
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The partition function is defined accordingly as

Z =

∫
dh1 · · · dhN exp

[
−H({h})

kBT

]
and the free energy is F = −kBT logZ. For any observable A, the average is therefore defined as

〈A〉 =

∫
dh1 · · · dhNA({h}) exp

[
−H({h})

kBT

]
∫

dh1, · · · dhN exp
[
−H({h})

kBT

]
Note that it is simpler (and better defined) to consider the discrete variables to compute averages.

Average extension.

Let us first compute the fluctuation of the string height 〈h2〉. We have:

〈h2〉 =
1

L

∫ L

0

dx〈h2(x)〉

The height is averaged over the probability distribution with the previous Hamiltonian, which takes the form:

p({h}) =
1

Z
exp

[
− 1

kBT

∫
dx

(
1

2
k(∇h)2 +

1

2
Kh2

)]
The difficulty comes the gradient terms, i.e. (in the discretized version) from the interaction between nearest

neighbors. We need to ’diagonalize’ the hamiltonian by changing of variables: this can be achieved using the
Fourier space. As we will see, modes in to the Fourier space do separate and allows calculating the averages
and partition function. We first recall a few definitions of the Fourier transforms (see also the mathematical
memo in Chapter 10):

hq =

∫
dxh(x)eiqx and h(x) =

∫
dq

2π
hqe
−iqx

We will also use Parceval theorem: ∫
dxf(x)2 =

∫
dq

2π
|fq|2

Furthermore Fourier transforming the gradient corresponds to ∇ FT−→ −iq since∫
dx
∂h

∂x
eiqx = −iq

∫
dxheiqx = −iqhq

Back to the hamiltonian, we find that with Fourier variables, it simplifies to (making a FT and applying
Parceval): ∫

dx

(
1

2
k(∇h)2 +

1

2
Kh2

)
=

∫
dq

2π

1

2
(kq2 +K)|hq|2

In order to make averages, it will proove useful to come back to discretized variables, i.e. here discretized modes
in Fourier space. Since the length of the string is L, the Fourier modes are discretized as qn = 2π

L n, and the
discretization of the integral takes the form: ∫

dq

2π
(·) =

1

L

∑
n

(·)

Gathering the previous results, we therefore obtain:

exp

[
− 1

kBT

∫
dx

(
1

2
k(∇h)2 +

1

2
Kh2

)]
= exp

− 1

kBT

∫
dq

2π

1

2
(kq2 +K)|hq|2︸ ︷︷ ︸

1
L

∑
{qn}

1
2 (kq2+K)|hqn |2


so that

p({h}) =
1

Z

∏
{qn}

exp

[
− 1

2kBTL
(kq2

n +K)|hqn |2
]
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The probability distribution therefore takes the form of a product of probability for each mode, as p({h}) =∏
{qn} p0(hqn) (p0 being a gaussian), which shows that the hqn variables are statistically independent; and

furthermore they have a gaussian probability distribution since their weight is of the form exp
[
(·)|hqn |2

]
, with

a quadratic dependence in the exponential. We can therefore make use of the results we derived in Chap 4
(section 5) for the equipartition, to write immediately:

1

2L
(kq2

n +K)〈|hqn |2〉 =
1

2
kBT · 2

Note that we have a factor of 2 on the right hand side because hqn is a complex variable so it has two degrees
of freedom: its real and imaginary part. So finally we get:

〈|hq|2〉 =
2kBTL

kq2 +K

Note that (to recall where equipartition comes from), the steps of the calculation are:

〈|hqn |2〉 =
1

z

∫
dhRqn

∫
dhIqn

(
[(hRqn)2 + (hIqn)2

)
exp

[
−α(qn)

[
(hRqn)2 + (hIqn)2

)]
where we introduced the average over the real and imaginary parts of hqn , α(qn) = 1

2kBTL
(kq2

n + K) and z is

the normalization factor for the gaussian z =
∫
dhRqn

∫
dhIqn exp

[
−α(qn)

[
(hRqn)2 + (hIqn)2

)]
.

Coming back to the original question we have:

〈h2〉K =
1

L

∫ L

0

dx〈h(x)2〉 =
1

L

∫ +∞

−∞

dq

2π
〈|hq|2〉 =

1

L

∫
dq

2π

2kBTL

kq2 +K
=
kBT

π

∫
dq

1

kq2 +K
=
kBT

πK

∫ √
K

k

du

1 + u2

where we added the index K to highlight that this average is made with a confining well of strength K. So
finally we get that:

〈h2〉K =
kBT√
kK

Note that the fluctuations of the membrane increase linearly with temperature and diverge as 1/
√
K as the

strength of the confining potential decreases K → 0. This is a general result for elastic membranes, and they
exhibit very important fluctuations.

Now, we want to come back to our initial question where we consider a membrane confined in a well of width
D. We need to translate the previous results obtained for a string in a harmonic well to a ’physical’ confinement
of width D. This can be enforced by imposing that in the confined situation above, the fluctuations of h match
the width D: 〈h2〉K = D2. We therefore make the translation between the two problems as

kBT√
kK

= D2 ⇒ K =
1

k

(
kBT

D2

)2

Free Energy.

The final step is to calculate the free energy F for the confined membrane/string. In practice, we will calculate
∆F = F(D)−F(D →∞), i.e. the difference to the unconfined case. We have:

Z({h}) =

∫
dh1 · · · dhN exp

− 1

kBT

∑
i

(
1

2
k̃(hi+1 − hi)2 +

1

2
K̃h2

i

)
︸ ︷︷ ︸

=HTAH


Note that the terms inside the exponential could be written as a matrix, which can be rewritten in terms of
a diagonal coupling matrix A: this is the general route to calculate this gaussian integral. This is actually
equivalent to the Fourier Transform, which performs such a diagonalization:

Z({h}) =

∫
dh1 · · · dhN exp

[
− 1

kBT

∑
qn

1

2
(kq2

n +K)|hqn |2
]

=
∏
qn

∫
dhqn exp

[
− 1

2kBT
(kq2

n +K)|hqn |2
]

The last gaussian term can be calculated exactly∫
dhqn exp

[
− 1

2kBT
(kq2

n +K)|hqn |2
]

=
2πkBT

kq2
n +K
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(remember that the integral involves a real and a imaginary part of the variable). So finally we get that:

Z =
∏
qn

(
2πkBT

kq2
n +K

)
The free energy follows immediately

F(K) = −kBT logZ = −kBT
∑
qn

log
2πkBT

kq2
n +K

= −kBTL
∫

dq

2π
log

(
2πkBT

kq2 +K

)
Which gives:

∆F = F(D)−F(D →∞) = F(K)−F(K = 0) = −kBTL
∫

dq

2π
log

(
kq2

kq2 +K

)
So we get that:

∆F
L

= kBT

∫
dq

2π︸ ︷︷ ︸
u=
√

k
K q

log

(
1 +

K

kq2

)
= CkBT

√
K

k

where C is a numerical constant. Now using the previous conversion, kBT√
kK

= D2, we get that:

∆F
L

= C

(
kBT

D

)2

and the force per unit area

P (D) = −∂F
∂V

= − ∂

∂D

(
F
A

)
=

2C(kBT )2

kD3

These are the ’Hellfrisch’ results for the algebraic decay of the repulsion entropic force between membranes
(up to a prefactor which we are not intereted in). Although much simpler than the full calculation, the above
result captures the physics at play in the constrained membrane.

Overal, this is intersting to see how fluctuations can induce long range force due to entropic terms.



Chapter 7

Systems in interaction and phase
transitions.

7.1 Introduction.

Up to now we have merely considered ideal systems with no interactions between particles or magnets. Such
description is expected to remain valid for low density systems ρ → 0, as one can neglect interactions when
particles are far away. But interactions become key for high density systems – hence for condensed matter –,
in particular to describe phase changes. However partition functions become highly difficult to calculate for
interacting systems and, except in rare cases, cannot be evaluated exactly. One of this rare situation is the Ising
model in 1 and 2 dimensions, and these results have played, and still play, a key role in physics. However, various
approximation schemes have been developped, such as the virial expansion or the mean-field approximation,
which captures at least some qualitative features of the collective properties and phase change.

r

V(r)

Let us start by discussing briefly interactions between particles. A typical
shape for the interaction potential between molecules is like the one sketched
in the graph enclosed, highlighting typically a short-range repulsion and
a long-range interaction – here an attraction–. A typical example is the
Lennard-Jones potential

V (r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]

The short range 1/r12 is purely heuristic and accounts for the Pauli exclusion
principles between the electronic cloud of atoms. But the long-range 1/r6

attraction is universal and accounts for van der Waals interactions due to mutual polarisation of molecules. A
typical value for σ is a few angtröms and ε ∼ 10− 100meV. Another, even simpler, example is the hard sphere
potential:

V (r) =

{
+∞ if r < σ

0 if r > σ

This potental captures the short-range repulsion in its simplest form. This can also be re-written as e−βV (r) =
H(r − σ), with H the heaviside function. The hard sphere model has played a very important role as a model
system for liquid matter. It allows calculating a number of properties with exact or approximate results. One
counter-intuitive results for the hard sphere system is that it exhibits a liquid-crystal phase transition, even
though it has no attractive interaction. The transition is purely entropic by nature. For further discussion of
the hard sphere model, see the book by Hansen and McDonald, Theory of Simple Liquids, Elsevier (2013).

The above models corresponds to two-body interactions (i.e. the particles interact by pairs) and the Hamil-
tonian takes the form

H =
∑
i

~p2
i

2m
+
∑
i<j

V (|~ri − ~rj |)

Many-body interaction potential can occur in some systems, including three-body or even higher level interac-
tions, but we will not discuss these in this lecture. Once the hamiltonian is given, one needs to calculate the
partition function to obtain the collective and thermodynamic properties of the system, according to

Z =
1

N !h3N

∫
d~r1 · · · d~rNd~p1 · · · d~pNe−βH
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here in its classical version; quantum effects will be considered in the next chapter. Calculating this partition
function is obviously a formidable challenge, even for the hard sphere interaction.

Magnetic systems constitutes another important class of systems, which we will also discuss explicitly. We
consider interacting spins, and the interactions typically tend to align the spins (some interactions may tend
to anti-align the spins, leading to antiferromagnetic ordering). A simple way to describe the interaction is
according to the Hamiltonian

H = −4Jij
h2

~si · ~sj

with Jij a coupling term between two spins ~si. The physical origin of Jij is a quantum exchange mechanism
(a combination between the coulombic interaction and Pauli principle); typically, J ∼ 1eV. Based on this
interaction, one construct the Heisenberg’s model of magnetic systems:

H = − 4

h2

∑
i<j

Jij~si · ~sj − γ ~B ·
∑
i

~si

An even simpler model is to assume that the value of the spin takes only two extreme values ±~
2 , while restricting

interactions to only nearest neighbors. This is the Ising model. Writing ~si = ~
2Si, Si = ±1 we obtain the Ising

hamiltonian

H = −J
∑
〈i,j〉

SiSj − µB
∑
i

Si

where the notations 〈i, j〉 denotes a sum over pairs of nearest neighbors. For such spin models, the partition
function writes

Z =
∑
{si}

e−βH({si})

with the sum over microscopic states {si} = {Si = ±1} for the Ising model.

Again, calculating this partition function is extremely difficult and in most cases impossbile. The Ising
model can be easily solved in dimension 1. And one of the great achievement of the 20th century in physics is
the exact solution for the 2 dimensional model. This is a formidable tour de force achieved by Lars Onsager in
1944, see below. The 3D model was not solved up to now.

In the following, our objective then is to compute exact expression for Z whenever possible, or at least build
’reasonable’ approximations of it.

7.2 Interactions and partition functions.

7.3 Magnetic systems.

7.3.1 Ising model: exact Results in 1D and 2D.

As mentioned above, the Ising model is a canonical model in physics for magnetic systems, but even beyond for
any system and phase change. For example, we will discuss in Sec. 8.4 a model for capillary adsorption which
reduces to an Ising model.

We recall the Ising hamiltonian

H = −J
∑
〈i,j〉

SiSj − µB
∑
i

Si

Quantities of interest are the partition function and the average magnetization. The latter is defined as m =
〈 1
N

∑N
i=1 Si〉, the average spin in the system. It follows from

m =
1

Z

∑
{Si}

(
1

N

∑
i=1,N

Si

)
e−βH({Si}),

or equivalently m = − 1
Nµ

∂F
∂B

∣∣∣∣
B=0

, where F = −kBT logZ the free energy.

General results:
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1D.

In 1 dimension, the calculation of the partition function is quite straightforward and follows from the transfer
matrix method. We will report this calculation in section 8.4 in the context of the capillary adsorption and we
only give the main outcomes here. The average magnetization is

m =
sinh

(
µB
kBT

)
√

sinh2( µB
kBT

) + exp
(
− 4J
kBT

)
and the free energy is

F = −NkBT

{
J

kBT
+ log

[
cosh

µB

kBT
+

[
sinh2 µB

kBT
+ exp

(
−4J

kBT

)]2
]}

In one dimension, the Ising model exhibits no phase transition. For B = 0, then m = 0 for any
temperature, except for T = 0.

2D.

The two dimensional version of the Ising model was calculated by Onsager in 1944. Onsager computed the
partition function in 2 dimensions [Physical Review 65 117 (1944) 1] and Yang published in 1952 (8 years later
!) the calculation of the mean polarization [Physical Review 85 808 (1952)2].

The result for the partition function has the following expression (for B = 0):

Z =

(
2 cosh

2J

kBT
eI
)N

, I =
1

2π

∫ π

0

dφ log
1 +

√
1− x2 sin2 θ

2
, x =

2 sinh
(

2J
kBT

)
cosh2( 2J

kBT
)

The model exhibits a second order phase transition (for B = 0) between a disordered phase m = 0 at high
temperature and an ordered phase m 6= 0 at low temperature. The phase transition occurs at a temperature
TC defined implicitly as:

sinh
2J

kBTC
= 1

Accordingly Tc = 2.269×̇ J
kB

. The temperature dependence of the average magnetization is given as

m(T ) =

±
(

1− 1
sinh4( 2J

kBT
)

)1/8

for T < Tc

0 for T > Tc

and is shown in the enclosed figure

Note that there is a symmetric solution −m which we do not plot here. Note the steep dependence of the
magnetization close to Tc and one can verify that m(T ∼ TC) ∼ |T − TC |1/8. This highlights the exact critical
exponent for the temperature dependence of the order parameter for the 2D Ising model.

1https://journals.aps.org/pr/abstract/10.1103/PhysRev.65.117
2https://journals.aps.org/pr/abstract/10.1103/PhysRev.85.808
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The role played by these results in physics is absolutely tremendous. It shows exactly how order builds up
collectively, with a symmetry breaking, in a model where only short range interactions occurs between particles
(here spins). It acts as a benchmark result for a second order phase transition. It provides exact results for the
critical exponent, etc. As mentioned above, there is no solution ini 3D, and actually no solution in 2D with a
magentic field.

7.3.2 Mean field approximation.

There is therefore a need to make proper approximation schemes in order to calculate the partition function.
One of the simplest and quite natural approximation scheme is the so-called ’mean-field’ calculation. We already
used it in the first lecture for the voter model. As we will show, this approach provides qualitatively correct
results (sometimes even quantitative in specific models) but fails close to the transition point. Hence, it is
always a good starting point since it captures most of the qualitative behavior (i.e. the existence of a phase
change and symmetry breaking), but not in the detailed resulting laws: e.g. magnetization versus temperature,
critical exponents, or the value of the critical temperaturer itself.

The idea of the mean field approximation is to say that ”fluctuations are small”. So the value for any
microscopic quantity X is assumed to remain close to its average X̄.

To implement the mean-field approximation, let us first consider a magnetic system without any interactions,
i.e. J = 0, but under a magnetic field B 6= 0. The hamiltonian is therefore

H = −µB
∑
i

Si,

and the partition function factorizes naturally

Z =
∑
{Si}

eµBβ
∑
i Si =

∑
S1=±1

eµBβS1 ×
∑

S2=±1

eµBβS2 × · · · =
(

2 cosh
µB

kBT

)N
The averaged magnetization therefore takes the expression

m =

∑
{Si}

1
N

∑
i Sie

µBβ
∑
i Si∑

{Si} e
µBβ

∑
i Si

=
1

N

∂

∂x
logZ with x = βµB

so that

m = tanh

(
µB

kBT

)
This result is reported on the following graph (S̄ ≡ m).

B

-1

1

S

Now let us come back to the interacting Ising model with the hamiltonian (now with B = 0):

H0 = −J
∑

<i,j>=1

SiSj

Since in the mean field approximation, we assume that the spins do not deviate much from their average, we
hence write Si = S̄ + δSi, with δSi << S̄ and S̄ ≡ m is the average value for the spin. When introduced in the
Hamiltonian, one has:

H = −J
2

∑
i,j neighbors

(m+ δSi)(m+ δSj)− µB
∑
i

Si

= −J
2
qNm2 − J

2

∑
i,j

(mδSi +mδSj)−
��

�
��

��*
negligeable

J

2

∑
i,j

δSiδSj − µB
∑
i

Si
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where q is the number of neighbors in the lattice.
In the mean-field approximation, we therefore neglect the second order terms δSiδSj in the hamiltonian.

Once this approximation is done, we come back to the original spin variables Si = S̄+δSi (again we use equally
S̄ ≡ m as notations). We end up with the mean-field approximation for the hamiltonian

H = −J
2
qNm2 + JqNm2 − qJm

∑
i

Si − µB
∑
i

Si =
J

2
qNm2 − (qJm+ µB)

∑
i

Si

≡ J

2
qNm2 − µBeff

∑
i

Si

with

µBeff = µB + qJm

The externally applied field B adds up to the self-consistent field qJm induced by the other spins. Now, in this
effective hamiltonian, spins are independent. We can then use the previous result for the independent spins and
we can calculate the average magnetization as:

m = tanh

[
µBeff(m)

kBT

]
= tanh

[
µB + qJm

kBT

]
where the term J

2 qNm
2 in the hamiltonian disappears when computing the average in the canonical ensemble.

Finally if we restrict ourself to B = 0, we obtain the self-consistent equation:

kBT

qJ
x = tanhx

with x = qJ
kBT

m. We can further introduce the parameter α = kBT
qJ ≡ T

Tc
, with Tc = qJ

kB
. We thus get the

self-consistent equation for x or m

tanhx = α · x

.
This equation for m can be solved numerically but one can learn a lot from a graphical construction. We

plot both tanhx and α · x, see the figure below.

�

There are two different possibilities:

• if α > 1 (orange dashed line, corresponding to T > Tc), then the line α · x only crosses tanhx for x = 0:
hence the only solution to the previous equation is m = 0. This corresponds to temperature T > TC .

• if α < 1 (blue dashed line, corresponding to T < Tc) then the line α · x crosses tanhx at three different
points: one at x = 0 and two intersections at non-vanishing values of x, say ±xsol. One can actually verify
(see also below) that the solution corresponding to m = 0 is thermodynamically unstable (exhbiting a
negative second derivative of the free energy) and we can discard it.

Hence the critical temperature Tc = qJ
kB

is the transition temperature separating a disordered phase (m = 0)
at high temperatures T > Tc and the ordered phase (m 6= 0) at low temperature T < Tc. The system thus
gets magnetized for T < Tc and this corresponds to a ferromagnetic state. For T > Tc the system is in a
paramagnetic state, meaning it does not exhibit a permanent magnetic moment (m = 0), but can orientate and
exhibit a small magnetization under an externally applied magnetic field.
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We can obtain some analytical results close to the critical point. Indeed for α ' 1, the solution xsol is small
and we expand

tanhx ≈ x− x3

3
The self-consistent equation then writes

αx = x− x3

3
⇔ x2

sol = 3(1− α) for α < 1

with solutions

m(T ) =
kBT

qJ

(
1− T

Tc

)1/2

for T < Tc and m = 0 for T > Tc. This shows that m(T ) ∝ (Tc − T )1/2 close to the critical point and the
corresponding critical exponent for mean-field is 1/2. This is to be compared to the exact 2D result for the
same exponent which is 1/8 (see above).

The magnetic susceptibility is a measure of how much a material will become magnetized under an applied
magnetic field. Similar calculations, but including the B terms, do show that

χ =
dm

dB

∣∣∣∣∣
B=0

∼ 1

|Tc − T |
T=Tc−→ ∞

7.3.3 Mean field free-energy.

An alternative route to obtain this result is to calculate directly the free-energy. We know that for non-interacting
spins we have:

H = −µB
∑
i

Si, Z =

(
2 cosh

µB

kBT

)N
, F = −kBTN log

(
2 cosh

µB

kBT

)
So when we take into account the interactions at the mean-field level, we calculate similarly

H = HMF =
JqNm2

2︸ ︷︷ ︸
cst

−µBeff

∑
i

Si, ZMF =
∑
{Si}

e−βHMF ({Si}) = e
− JqNm

2

2kBT

(
2 cosh

µBeff

kBT

)N
which thus gives:

FMF (m,T ) = −kBT logZMF =
1

2
JqNm2 −NkBT log

(
2 cosh

(
µB + Jqm

kBT

))
This expression can be viewed as the free-energy of the system constrained to a magnetization m, FMF (m). At
equilibrium, with constant temperature and volume, the free-energy is minimal with respect to the constraint
m. This imposes:

∂FMF

∂m
= 0 = N

(
Jqm− kBT

Jq

kBT
tanh

(
Jqm

kBT

))
⇒ m = tanh

(
Jqm

kBT

)
We thus recovers the previous results.

Now, let us plot this free energy as a function of m for various temperatures, see graph below. For T < Tc,
FMF (m) exhibits only a single minimum for m = 0. Now for T < Tc, FMF (m) exhibits two minima for non-
vanishing m, and a maximum at m = 0. Interstingly, as T decreases across Tc, the curvature of FMF at m = 0
(second derivative) reverses, making this solution unstable for T < Tc.

T > Tc

T < Tc

S

FMF
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7.3.4 Bragg-Williams approach.

We now present an alternative mean field description, called Bragg-Williams approach. As we will see, this
gives a different free-energy (one has to remember that the mean field is only an approximation) but the same
transition.

To procede, we directly make estimates of the energy and the entropy of the system. Let us introduce
the following conventions: < i, j > indicates a sum over all pair of nearerst neighbours spins. The energy is
approximated as:

E = 〈H〉 = −J〈
∑
<i,j>

SiSj〉 ≈ −J
Nq

2
m2

where the factor Nq/2 counts the number of pairs with q nearest neighbors. The entropy is calculated here in
terms of the number of configurations to produce a state with a given magnetization m:

S(m) = kB log Ω = kB log(#{configurations s|m(s) = m})

So the problem is reduced to counting how many ways there are to generate m. Now if we introduce N+ and
N− the number of spins up and down we can write:

m =
N+ −N−

N
, so N+ = N

(
1 +m

2

)
, N− = N

(
1−m

2

)
Now the number of possible configurations is simply given by:

Ω =

(
N
N+

)
=

N !

N+!N−!

From this we get:

S = kB log
N !

N+!N−!
= kB (N logN −N −N+ logN+ +N+ −N− logN− +N−)

= −kBN(
N+

N
log

N+

N
+
N−
N

log
N−
N

) = −kBN
(

1 +m

2
log

1 +m

2
+

1−m
2

log
1−m

2

)
So in total we get:

FBW (m) = −JqNm
2

2
+NkBT

(
1 +m

2
log

1 +m

2
+

1−m
2

log
1−m

2

)
As we quoted earlier, one can remark that this expression of the free-energy is not the same as the one we found
previously in the previous mean-field approach; however the minima and the corresponding solutions for the
magnetization will be the same.

Let us calculate these minima:

0 =
∂FBW
∂m

= −JNqm+
NkBT

2
log

1 +m

1−m

We deduce 1+m
1−m = exp

(
2Jqm
kBT

)
, and then:

m =
exp
(

2JqmkBT

)
− 1

exp
(

2JqmkBT

)
+ 1

= tanh

(
qJm

kBT

)

So we indeed get the same minima as in the previous mean-field description and therefore the same transition
point. Note that the Bragg-Williams approach writes the free energy as

F = 〈H〉 − TS0

where S0 is the entropy of a ’reference’, non-interacting, system. It is therefore making an ’expansion’ around
the non-interacting model.
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7.3.5 Landau description of phase transitions

Landau generalized the description of phase transitions from the consideration of the functional dependence of
the free energy in terms of the order parameter. As we showed above, the (mean-field) free energy was obtained
to be a function of the magnetization m. Close to the critical point, T ∼ Tc, we have

FMF (m)
T∼TC≈ 1

2
α(T )(T − TC)m2 +

1

4
β(T )m4 + · · ·

Such an expansion is called a Landau free energy. This one is generic for second order phase transition, with
an order parameter showing an underlying microscopic symmetry m→ −m (see below).

For first order transitions, a typical free energy expansion is

FMF (φ) =
1

2
α(T )φ2 +

1

3
β(T )(T − T ∗)φ3 +

1

4
γ(T )φ4 + · · ·

For the liquid-gas transition, the order parameter φ is the density (or any equivalent function of the density).

The difference between the expansions for the first and second order transition is the symmetry of terms
involved of the various expansion, here the presence of cubic terms in the expansion. As mentioned above, the
presence or not of these terms is determined by the microscopical symmetries. For example the spin system
we studied previously exhibits an up/down symmetry, i.e the hamiltonian is not changed if one reverses all the
spins and so is the free energy. In contrast, the liquid-gas transition has no similar symmetry, hence there is a
third order term in the expansion of the free energy in the order parameter (the density difference), as shown
above. In the appendix in Chapter 11, we show, for the van der Waals model of the liquid-gas transition, how
the Landau expansion emerge from the detailed free energy.

Overal the Landau expansion assumes an analytic expansion (in mathematical sense) in the order parameter,
which is not fully justified, in particular close to a critical point. But this framework is extremely useful to
describe the properties of matter. Accordingly, applications of the Landau description are numerous: supra-
conductivity, liquid crystals, super fluidity, etc. For more details on this approach, we refer to the book by
Chaikin-Lubensky, Principles of condensed matter physics, Cambridge University Press.

7.4 Lattice models.

We discussed above lattice models of spins. But it is easy to introduce lattice models of liquids, or more generally
matter, where quantities are discretized on a lattice. We can then ’map’ the model to the Ising models and/or
make mean-field descriptions, etc.

Let us build a simple lattice model for a liquid. We describe the system on a lattice, and count the number
of particles on each site via a spin variable: Si = 1 is the lattice’s node contains a particle, and Si = 0 for no
particle. We also assume that the interactions in between particles are only acting over short lengths, and we
consider only nearest neighbors. We denote the energy of interaction as −ε×. The Hamiltonian is then given
by:

H = H({Si}) = −ε×
∑
〈i,j〉

SiSj

with the notation 〈i, j〉 corresponding to nearest neighbours. We can also put the whole system in an external
potential, say with an energy −ε0, acting on all particles. This gives an extra term to the Hamiltonian:

Hext = −ε0
∑
i

Si

Finally the total number of particles is given by:

N =
∑
i

Si

Note that this model is both extremely crude and simple, but also very rich in terms of properties and predictions.
It is obvious that it will present a (liquid-gas) phase transition, with a critical point, since it is very close to the
Ising model.

Here we discuss such lattice models in the context of capillary condensation, which is the liquid-gas transition
shifted by confinement.
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7.4.1 Application to a 1D model of capillary condensation.

Sketch of capillary condensation

Capillary condensation is the liquid-vapor phase transition, which is shifted in the confinement. A system of
particles (for example water) is confined between two surfaces separated by a distance D and is in contact
with an external reservoir of vapor (for example, with controled water humidity). Now let us assume that the
confining surfaces have a strong interaction with the fluid, so that they ’prefer’ to be wet by the dense liquid.
One says that they are ’wetting’. Then a competition occurs: volume effects versus surface effects. In the
volume, the stable thermodynamic phase is the vapour; but at surface, the liquid is favored energetically. The
ratio of volume versus surface is a length. And we will see that there is indeed a characteristic confinement Dc,
such that for D > Dc the bulk phase is stable (vapor), but for D < Dc a phase transition occurs towards the
liquid phase. Hence, the shifted liquid-vapour transition.

We will explore exhaustively the capillary condensation in Section 8.5.5.
But here we make a first, crude, approach to the problem using a 1D lattice description. It will be partly

infructious and we will not predict a true phase transition, which is expected in 1 dimension. This is however
an exact statistical physics calculation and it highlights the transfer matrix method which allows solving the
1D Ising model.

1D model and the transfer matrix method.

We consider a 1D lattice system composed of M interacting sites – characterized by the energy of interaction ε×
– and interacting with an external ’surface’ via an interaction energy −ε0. The occupation of the site by a liquid
molecule is determined by the variable Si = 0, 1. We assume that the system is periodic, so that SM+1 = S1.
The Hamiltonian is given by:

H1D = −ε×
M∑
i=1

SiSi+1 − ε0
M∑
i=1

Si

The total number of particles is N =
∑
i Si. Hence investigating the properties in N,V, T (canonical)

ensemble would require to fix this quantity and this makes the calculation particularly cumbersome in terms of
combinatorics. Hence we will make use of the grand-canonical ensemble µ, V, T which is particularly relevant
for this problem. Accordingly the grand-partition function is defined as

Θ =
∑
{Si}

e
µN({Si})
kBT e

−H({Si})
kBT =

∑
S1=0,1

∑
S2=0,1

∑
S3=0,1

· · · e
µ

kBT

∑
i Sie

−H({Si})
kBT

=
∑

S1=0,1

· · ·
∑

SM=0,1

exp

(
ε×
kBT

M∑
i=1

SiSi+1 +
ε0 + µ

kBT

M∑
i=1

Si

)
(7.1)

Let us introduce the following notation

T (Si, Sj) = exp

(
ε×
kBT

SiSj +
ε0 + µ

kBT

Si + Sj
2

)
and the partition function can then be rewritten as

Θ =
∑

S1=0,1

· · ·
∑

SM=0,1

M∏
i=1

T (Si, Si+1)

Now T (Si, Sj) can be considered as the element of a 2× 2 matrix:

Π =

(
T (1, 1) T (1, 0)
T (0, 1) T (0, 0)

)
for the various values of Si = 0, 1, Sj = 0, 1. Now using this matrix, we can rewrite the previous sum in terms
of product of matrices. For example, fixing Si, Sj we have the relationship∑

Sk

T (Si, Sk)T (Sk, Sj) = (Π2)(Si, Sj)

Similarly, extending to a further term, we have∑
Sk,Sm

T (Si, Sk)T (Sk, Sm)T (Sm, Sj) = (Π3)(Si, Sj)
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etc. In general we have that for any matrix A,

(An)i,j =
∑

i1,i2,...in−1

Ai,i1Ai1,i2 · · ·Ain−1,j

so that

Tr(An) =
∑
{ik}

Ai1,i2Ai2,i3 · · ·Ain,i1

Then in the previous sum for the partition function, we can perform all the intermediate sums to obtain in the
end:

Θ =
∑

S1=0,1

(ΠM )(S1, S1) = Tr
(
ΠM

)
(noting that due to periodicity, S1 appears at the two ends of the line of spins). Now we diagonalize ΠM to
compute the trace. The matrix itself is:

Π =

exp
(
ε×
kBT

+ ε0+µ
kBT

)
exp
(
ε0+µ
2kBT

)
exp
(
ε0+µ
2kBT

)
1

 ≡ (a b
b 1

)

The eigen values follows immediately as

λ± =
1 + a±

√
(1− a)2 + 4b2

2

with a and b defined above. The partition function is therefore

Θ = λM+ + λM−

For large system size M →∞, the largest eigenvalue dominates, Θ ≈ λM+ and the grand potential follows as

Ω(µ, T,M) = −kBT log Θ = −MkBT log(λ+(µ, T ))

From the expression of the partition function, one can calculate any thermodynamic property. For example,
the average density is calculated as

N = −∂Ω

∂µ
= MkBT

∂2

∂µ∂λ+(µ,T )

λ+(µ, T )
⇒ ρ =

N

L
=
kBT

a

∂λ+

∂µ

λ+

leading to

ρ(µ, T ) =
1

2a

1 +
sinh

(
ε0+ε×+µ

2kBT

)
√

exp
(
− ε×
kBT

)
+ sinh2( ε0+ε×+µ

2kBT
)


We plot the density as a function of the chemical potential in the figure below. This plot does not highlight
any discontinuity or change of slope, meaning that there is no pecularity in the thermodynamic potential. In
other words, there is NO phase transition in this model. The model predicts a smooth transition from a low
density (gaseous system) to a high density (liquid system) for µ ' −(ε0 + ε×). The transition becomes steeper
as ε× increases and only in the peculiar limit ε× →∞ we get a step-function for the density, meaning a phase
transition.

Altogether, one should however appreciate that this is an exact result, which accounts for the strong cor-
rrelation between particles. The absence of phase transition is due to the 1D nature of the problem. In
Sec. 8.5.5 below, we will come back to the phenomenon of capillary condensation, and discuss the underlying
thermodynamics.
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7.5 Dense Liquids and Phase Transitions.

7.5.1 Structures in liquids.

A liquid is a dense and disordered phase. To give some orders of magnitude, the density is typically ρ ∼ 1
σ3

where σ is the size of one molecule. For water for example: ρ = 3 · 1028 molecules.m−3 (to compare with
σ−3 = 1/(3 · 10−10)3 = 3·1028 molecules.m−3). There are therefore strong interactions between molecules, which
makes the calculation of the statistical properties really difficult, and in particular the partition functions. We
discussed already in section 8.1 the typical interactions occuring between molecules and atoms and quoted the
examples of Lennard-Jones or hard sphere potentials. For a given pair interaction potential V (~r), the classical
(canonical) partition function will write

Z =
1

N !h3N

∫
d~r1 · · · d~rNd~p1 · · · d~pNe−β{

∑
i

~p2
i

2m+
∑
i<j V (~ri−~rj)}

The kinetic part factorizes from the potential part and can be integrated out explicitly to give

Z =
1

N !

(
V

λ3
T

)N
× 1

V N

∫
d~r1 · · · d~rNe−β

∑
i<j V (~ri−~rj)

with λT the thermal de Broglie length scale, λT =
√
h2/2πmkBT . This highlights the ideal part of the partition

function Zid = 1
N !

(
V
λ3
T

)N
. The remaining potential part is the most interesting and contains most of the phase

behavior... but is unfortunately highly difficult to calculate.
So we now discuss a number of tools to describe dense liquids, as well as various approximation schemes to

evaluate the partition function of interacting particles and their thermodynamic properties.

Structure and density correlations.

We start by considering the structure inside liquids. Since the system is packed, the position of each molecules
is strongly correlated to that of its neighbours. We introduce here the correlation functions, an in particular
the pair correlation function g(r), which are proper descriptors of the liquid structure.

Let us formally introduce correlation functions from the microscopic density ,

ρ̂(~r) =

N∑
i=1

δ(~r − ~ri)

This is as such a distribution in mathematical terms (see Chap. 10.3). The integration over the volume V leads
to the simple result: ∫

d3~r ρ̂(~r) =

N∑
i=1

∫
d3~rδ(~r − ~ri) = N

The statistical average of the microscopic density reduces ρ(1)(~r) = 〈ρ̂(~r)〉 to the usual numerical density
ρ = N/V in an homogeneous system

ρ(1)(~r) = 〈
N∑
i=1

δ(~r − ~ri)〉 = ρ
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One can then define a two-body density distribution according to:

ρ(2)(~r, ~r′) = 〈ρ̂(~r)ρ̂(~r′)〉 = 〈
∑
i,j

δ(~r − ~ri)δ(~r′ − ~rj)〉

For |~r − ~r′| → +∞, the two regions of the system become uncorrelated and ρ(2)(~r, ~r′) → ρ2. The two-point
correlation function is accordingly defined as

G(~r, ~r′) = 〈(ρ̂(~r)− ρ)(ρ̂(~r′)− ρ)〉

In a translationally invariant system, G(~r, ~r′) = G(~r − ~r′) and one can rewrite

G(~r, ~r′) = ρ δ(~r − ~r′) + ρ2(g(~r − ~r′)− 1)

where we introduced g(~r), the pair correlation function; the first term comes from the i = j contribution in
the previous sum. In a homogeneous and isotropic system, this function only depends on the distance r = |~r|
between molecules. It has accordingly a simple interpretation: ρg(r) is the density of particules at a distance
r from a particle situated at r = 0. In other words, ρg(r) × (4πr2dr) is the probability to find a molecule at
a distance r within dr from a central molecule. The pair correlation function thus describes the modulation
of the density around a given particle. In a dense liquid we expect the following behavior for g(r) for various
densities (the volume fraction being defined as φ = π

6 ρσ
3), showing that the density oscillation increase when

the density increases. This is the signature of an increasing local structure inside the liquid, with a particle
enclosed in a ’cage’ formed by its neighbours. The oscillations correspond to the first, second, third, etc. layers
of neighbours. The effect gets stronger as the particle density increases.

When the density is moderate, corresponding to a ’dense gas’ with weak interactions, the probability to find
a particles around a fixed center will be given by the simple Boltzmann weight in terms of interaction potential,

e
− V (r)
kBT . One thus concludes that

g(r) = e
− V (r)
kBT

for low to intermediate densities.
For more details on fluid structure, we refer to Hansen and McDonald, Theory of Simple Liquids, Elsevier

(2013).

Link with thermodynamics and virial Expansion

The knowledge of the pair correlation function g(r) is central in liquid and it allows computing many properties
of the fluid. For example one can obtain an (exact) virial formula for the pressure in terms of g(r) as

P

kBT
= ρ− ρ2

6kBT

∫
d~r g(r)~r · ~∇V

(not demonstrated here, see Hansen and Mc Donald cited above).
The previous exact formula illustrates how the pressure expands naturally as a function of density. For

example, if one assumes that g(r) is independent of ρ (which is only valid at low densities), then the previous
formula simply gives terms in ρ and ρ2. The first correction of g in density will lead to a term in ρ3, etc. In
full generality, one can write

P

kBT
= ρ+B2ρ

2 +B3ρ
3 + · · · where Bi is called the virial coefficients.

The term B2 only takes into account 2 body interactions and its expression is:

B2 =
1

2

(∫
d3~r

[
1− e−

V (r)
kBT

])
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A simple derivation of this result is to use the previous virial formula and injecting the first correction for g(r),

g(r) = e
− V (r)
kBT valid for low density (and which is independent of the density):

− 1

6kBT

∫
d~r ~r· ~∇ve

− V (r)
kBT︸ ︷︷ ︸

kBT

(
1−e

− V (r)
kBT

) =
−1

6kBT

∫
d~r ~r· ~∇

[
1− e−

V (r)
kBT

]
=

∫
R→+∞

d~S ~r(1− e−
V (r)
kBT )︸ ︷︷ ︸

→0

+
1

6

∫
d3~r(1−e−

V (r)
kBT ) ~∇ · ~r︸ ︷︷ ︸

3

hence the previous result, B2 = 1
2

∫
d3~r(1− e−

V (r)
kBT ).

An alternative derivation is to expand the partition function as a function of the density (Mayer develop-
ment). We first write Z = Zid × Zex where:

Zid =
1

N !

(
V

λ3
T

)N
and Zex =

1

V N

∫
d3~r1 · · · d3~rN e

−β
∑
i<j V (~rij)

Then we re-write:

Zex = 〈e−
∑
i<j βV (rij)〉v where 〈·〉v =

1

V N

∫
d~r1 · · · d~rN (·)

To proceed further and illustrate the density expansion, one can make a crude factorization approximation for
Zex to write

Zex = 〈
∏
i<j

e−βV (rij)〉v ≈
∏
i<j

〈e−βV (rij)〉v

in which we only keep the two-body interaction terms. This approximation is best understood by introducing
the Mayer function defined as exp[−βV (rij)] ≡ 1 + f(rij). In the expansion, this amounts to keeping only the
terms that are linear in f : 〈

∏
i<j e

−βV (rij)〉v = 〈
∏
i<j [1 + f(rij)]〉v ' 1 + 〈

∑
i<j f(rij)〉v + . . .

Using this result, we can then calculate

〈e−βV (rij)〉v =
1

V N

∫
d~r1 · · · d~rNe−βV (rij) =

1

V 2

∫
d~r1d~r2e

−βV (~r12)︸ ︷︷ ︸
~r12=~r1−~r2=~r

=
1

V

∫
d~r e−βV (~r)︸ ︷︷ ︸

1+(e−βV (r)−1)

= 1− 1

V

(∫
d~r(1− e−βV (~r))

)

Back to the free-energy, F = −kBT logZ = Fid + Fex, we get

F = −kBT logZ = Fid−kBT log
∏
i<j

[
1− 1

V

(∫
d~r(1− e−βV (r))

)]
︸ ︷︷ ︸

(1− 1
V

∫
d~r1−e−βV (r))

N(N−1)
2

= Fid−
kBT

2
N2 log

(
1− 1

V

∫
d~r[1− e−βV (r)]

)
︸ ︷︷ ︸

≈−1
V (
∫

d~r1−e−βV (r))

and we recover the previously announced result:

P = −∂F
∂V

= Pid + Pex = ρkBT + kBTρ
2 1

2

∫
d~r(1− e−

V (r)
kBT ) + . . .

These are the two first terms in the virial expansion for the pressure. Increasing the density requires to add
more and more terms in the density expansion. At very high density, this expansion is not very efficient in
capturing the strong correlations, in particular those originating in volume exclusion, and requires to involve
high order terms in the expansion. We will follow an alternative method below to account for these effects.

7.5.2 Virial expansion and Van der Waals fluid.

The idea here is to split the potential in two pieces: a short range interaction term (’r < σ’) and a long range
interaction term (’r > σ’). The second virial coefficient B2(T ) thus writes as:

B2 ≈ BSR +BLR where BSR =
1

2

∫ σ

r=0

(1− e−βV (r)︸ ︷︷ ︸
≈0

) and BLR =
1

2

∫ +∞

r=σ

(1− e−βV (r)︸ ︷︷ ︸
≈βV (r)

)

where we assumed that the potential is strong and repulsive for the short rand part, and weak in the long rang
part. Hence we get that:

B2 =
1

2

4πσ3

3
+

1

2kBT

∫ +∞

σ

V (r)d~r = b− a

kBT

We call b the excluded volume and a is positive if the long range potential is attractive.
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State equation.

From the virial expansion we immediately get:

P

kBT
= ρ+ (b− a

kBT
)ρ2

so that:
P

kBT
= (ρ+ bρ2)− aρ2

kBT

Excluded Volume.

As we quoted above, one issue is that the second term bρ2 originates in the short range part, i.e. excluded
volume where correlation are very strong. The virial expansion is therefore ill-justified for this term.

Let us come back on the origin of this contribution. Physically this excluded volume term stems from the
fact that the volume accessible to particles is restricted by the presence of the other particles. A simple way to
account for this effect is to simply replace the bare volume with the free volume accessible to particles, i.e:

V N → V Nfree = [V − N

2
V0]N where V0 is the volume of 1 particle.

The N/2 term avoids double-counting of pairs of particles. Keeping only these terms (we forget for now the
other interaction terms in the partition function), we obtain the following expression for the partition function

Z = Zid × Zex with Zid =
V N

N !λ3NT
and Zex =

(
1− N

2

V0

V

)N
The free energy follows directly

F = −kBT logZ = −kBT logZid − kBT logZex

and the pressure is deduced as:

P = −∂F
∂V

= ρkBT +NkBT
∂

∂V
log

(
1− NV0

2V

)
= ρkBT +

ρ2kBT

1− ρV0

2

V0

2
=
ρkBT

1− bρ

Where b = V0

2 is the excluded volume. As expected the pressure does strongly increases with density, and
diverges when the density increase reaches 1

b , corresponding to the situation where particles fill the complete
volume V (no free volume).

Van der Waals equation of state and free energy

Adding this excluded volume contribution to the virial contribution associated with the long range forces, one
obtains the corresponding van der Waals equation of state:

P (ρ, T ) =
ρkBT

1− bρ
− aρ2

The corresponding free energy for the van der Waals model is

f =
F

V
= kBT [ρ log

ρλ3
T

1− bρ
− ρ]− aρ2

and the chemical potential µ = ∂F
∂N = ∂f

∂ρ |V,T is

µ = kBT log
(
ρλ3

T

)
+

∂

∂ρ

[
kBT log

1

1− bρ
− aρ2

]
= kBT log

(
ρλ3

T

1− bρ

)
+ kBT

ρb

1− bρ
− 2aρ

7.5.3 Liquid-gas phase transition of the van der Waals fluid.

Note that we provide in the Chapter 11 a Mathematica file calculating numerically the phase diagram for the
van der Waals fluid, including the spinodal, phase coexistence, as well as the corresponding Landau expansion
of the free energy.

The previous van der Waals model for dense fluids is a canonical model to study the liquid-gas phase
transition. In spite of its simplicity, the model captures qualitatively most of the physics of the transition,
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including the existence of a critical point, metastable states, etc. Of course the region very close to the critical
point would require more advanced descriptions, which go beyond the purpose of this lecture.

The existence of a liquid-gas phase transition originates in the long range attractive interactions. In practice,
this can be understood from the previous expression of the free energy: the corresponding −aρ2 contribution to
the free energy density is a concave contribution, opposing the convex entropic and excluded volume terms (the
first and second contribution). Hence, when this term becomes dominant, the free energy may become concave
and the system hence unstable. As a rule of thumb, this occurs when aρ2 � kBTρ for densities ρ ∼ 1/b, hence
for temperature kBT � a

b . One expects therefore a critical temperature Tc ∼ a
kBb

below which phase separation
occurs and not above.

A similar estimate can be obtained using the pressure, since in the above parameters sets, the pressure will
obey ∂P

∂ρ < 0 and the system is accordingly thermodynamically unstable in this region.

Spinodal and critical point.

We start by analyzing the spinodal limit. To do so, we search for the unstable region, which is such that
∂2f
∂ρ2 < 0, and the boundaries of the spinodal curve in the phase diagram are defined by ∂2f

∂ρ2 = 0, or ∂P
∂ρ = 0.

For a given temperature, this will give two values for the density, ρVspin(T ) and ρLspin(T ) delimiting the spinodal
region. Calculating

0 =
∂P

∂ρ
=

kBT

1− bρ
+

ρkBTb

(1− bρ)2
− 2aρ

one deduces that ρVspin and ρLspin are the two solutions of the equation

kBT = 2aρspin(1− bρspin)2 ≡ Tspin

From the corresponding solutions, one can also calculate the spinodal pressure Pspin(ρspin(T ), T ) as a function
of temperature (or equivalently Pspin(ρ, Tspin(ρ)) for a given density). We plot below the boundaries of the
spinodal in the ρ, P variables.

The curves ρVspin(T ) and ρLspin(T ) (or corresponding pressures) join at a maximal temperature Tc where

ρVspin(Tc) = ρLspin(Tc). This is the critical point. In terms of the pressure, this critical point is defined according
to

∂P

∂ρ

∣∣∣∣
C

= 0 and
∂2P

∂ρ2

∣∣∣∣
C

= 0

For the van der Waals fluid, one obtains

∂2P

∂ρ2
=

2kBT

(1− bρ)2
− 2a

and the critical point conditions write{
kBTc = 2aρc(1− bρc)2

bkBTc = a(1− bρc)3
⇒

{
b = 1

2ρc
(1− bρc)

ρc = 1
3b

⇒


ρc = 1

3b

kBTc = 8a
27b

Pc = a
27b2

Coexistence.

The coexistence curve is obtained by solving the equilibrium conditions, i.e. equality of pressures and chemical
potentials in the gas and liquid phase.

P (ρl, T ) = P (ρg, T ) ≡ Psat(T ) and µ(ρl, T ) = µ(ρg, T ) ≡ µsat(T )
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An illustrative way to highlight the coexistence, and this condition of equality of pressure and chemical potential,
is to make a parametric plot of P (ρ, T ) versus µ(ρ, T ) using density ρ as a variable for a fixed temperature T .
This is shown in the enclosed figure for a temperature below the critical temperature. The curve intersects itself
in the µ, P plane, demonstrating that there are two densities ρg and ρl for which the pressure and chemical
potential are equal. This is the coexistence condition.

To get quantitative results, the condition of equal pressure and chemical potential can be solved numerically
in order to obtain the values for ρg and ρL for any temperature. The numerical solution using Mathematica is
presented in Chapter 11.

We plot the resulting curve for the phase diagram in the ρ, P variables, see graph above, together with the
spinodal curve. This coexistence curve is also called the ’bimodal’.

7.5.4 Thermodynamics of capillary condensation.

We come back in this section on the question of the capillary condensation, which is the liquid-gas phase
transition in confinement. This extends naturally the above discussion concerning the liquid-gas phase transition.

We consider a system of particles confined in a slit, and in equilibrium with a large (external) reservoir which
fixes the chemical potential of the fluid to µres. For example, one may consider water in a porous material (with
pores), in contact with a reservoir of water vapor with fixed relative humidity, RH. In this case, the chemical
potential of water is fixed to µ(RH) = µsat(T ) + kBT log (RH); RH = Pv/Psat(T ). The ’saturating’ values of
the chemical potential are those corresponding to the coexistence point at temperature T .

The physical principle underlying the capillary condensation is a surface-to volume balance. The stable
phase in the reservoir is the vapor, so the particles in the bulk of the pore will involve a free energy term
favoring the vapour and proportional to the volume V , generically as ∆f × V . Now, if we assume that the
surfaces are ‘wetting’, this means that they favor the liquid and there is a surface free energy which is lower for
the liquid as compared to the vapor; we usually write this as γSL < γSV , with γ the surface free energy. The
corresponding free energy gain writes as A(γSL − γSV ) where A is the area of the ’wetting’ surface.
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Hence in confinement, the system will undergo a transition from the vapour to the liquid when the gain
outweighs the cost i.e. V δf ∼ Aδγ. This highlights a threshold confinement Hc ∼ V

A ∼
∆γ
∆f below which surface

effects overcome the bulk terms and liquid ’condenses’ in the confinement. This is the essence of the capillary
condensation.

Let us formalize this a bit. We will follow two different routes, highlighting various aspects of the capillary
condensation.

Density functional approach.

Let us first introduce a density functional approach. To model the system we assume that the fluid interacts
with the surface via an external potential Vext(z) which depends only on the distance between fluid particles
and the surface surface. Including this external potential, the grand potential Ω, constrained to the value ρ of
the density, takes the form:

Ω({ρ}|µ, V, T ) =

∫
d3~r [f(ρ(~r)− µρ(~r) + ρ(~r)Vext(~r)]

Note that here we introduced the full density profile ρ(~r) as a parameter. This means that Ω depends on the
value of the density at each point of the sample, as Ω(ρ1, ρ2, ρ3, . . . ) where ρi = ρ(~ri) is the density at point ~ri:
the grand potential is accordingly a density functional, see Chapter 10 for more details.

Here we make a crude simplification and write that the density is homogeneous, ρ(~r) ≈ ρ0 = cst. This then
simplifies the integral as follows: ∫

d3~rρ(~r)Vext(~r) ≈ 2A · ρ0

∫ +∞

0

dzVext(z)

with A the lateral area. The factor 2 come from the two surfaces and we assume that the distance D between
the surfaces is larger than the range of the potential Vext(z). Defining

−α =

∫ +∞

0

dzVext(z) < 0

we hence obtain
Ω(ρ, µ, V, T ) = V × (f(ρ0)− µρ0)− 2ρ0αA

Now the distance between walls is D = V/A, so that

Ω(ρ0|µ, V, T ) = V

f(ρ0)−
(
µ+

2α

D

)
︸ ︷︷ ︸

µapp

ρ0


This equation highlights that the confined fluid behaves as a bulk fluid, but with a shifted chemical potential

µapp = µ+
2α

D
.

From the discussion on the fluid phase transition above, we know that for chemical potential below µsat (≡ µcoex),
the vapor phase is stable in the reservoir, while for chemical potential above µsat the liquid phase is stable
in the reservoir. Now in confinement, this discussion is made according to the apparent chemical potential
µapp = µ+ 2α

D . We define
∆µ = µsat − µ
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Since the vapor phase is the stable phase in the reservoir, then ∆µ > 0. In confinement, there will be therefore
a vapour to liquid transition when µapp > µsat, i.e. the transition in confinement happens for

∆µ =
2α

D

As a final step, let us rewrite α in terms of the surface free energies γSL and γSV . In the considered model we
have that γSL = ρL · (−α) and γSV = ρV · (−α). Hence combining the two expressions, we can write α as:

α =
γSV − γSL
ρL − ρV

> 0

Altogether capillary condensation occurs at a threshold chemical potential

∆µ =
2∆γ

∆ρD

Equivalently, if one introduces the threshold confinement

Dc =
2∆γ

∆ρ∆µ

then the vapour to liquid transition occurs for D < Dc.
Finally let us relate the chemical potential to the ’humidity’ in the reservoir. As we wrote in the introduction,

the relative humidity denoted RH is given by RH = Pv
Psat

, and the expression for the chemical potential
(approximated to an ideal gas) then writes:

µ = µsat + kBT log
Pv
Psat

Hence we can re-write:
∆µ = kBT log

(
RH−1

)
The threshold confinement is accordingly

Dc =
2∆γ

∆ρ kBT log
(
RH−1

)
This is usually called a Kelvin length.

Thermodynamical approach.

Let us now follow a slightly different thermodynamic approach. Here the chemical potential of the fluid is fixed
in the reservoir, so the proper thermodynamic potential is the grand potential, Ω(µ, V, T ). One can calculate
the grand potential assuming the vapour phase fills the pore, which we denote as ΩV , as well as the potential
assuming the vapour phase fills the pore, ΩL. Their expressions are

ΩV = −PvV + 2γSV S ∧ ΩL = −PLV + 2γSLA

And PV and PL both depend on µ and T and we will provide expression below. The potential difference
∆Ω = ΩL − ΩV is given by:

∆Ω = −(PL − PV )V − 2(γSV − γSL)A

and accordingly
∆Ω

A
= −(PL − PV )D − 2∆γ

This is a linear function of D which crosses ”0” for a threshold distance Dc such that ∆Ω(Dc) = 0. Hence this
gives Dc = 2∆γ

PV −PL ; see enclosed figure. Let us now calculate PV − PL as a function of the chemical potential
µ, T . We know that:

µ = µsat + kBT log
PV
Psat

⇒ PV = Psat exp

(
− ∆µ

kBT

)
≈ Psat − ρV ∆µ with ρV =

Psat

kBT

Now for PL we cannot use the perfect gas approximation because the pressure and density are way too high.
However we can use the Gibbs-Duhem relation, which gives:

ρdµ = dP
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-2Δγ

PV - PL

ΩL > ΩV
vapor phaseΩL < ΩV

liquid phase

H
*

H

ΔΩ

Assuming that the liquid is incompressible then we have that ρ = ρL and independent of µ, and we can rewrite
the above equation as:

ρL (µ− µsat)︸ ︷︷ ︸
−∆µ

≈ PL − Psat

So overall we get that:

PV − PL = PV − Psat + Psat − PL = −ρV ∆µ+ ρL∆µ = (ρL − ρV )∆µ

Putting everything together we obtain that:

Dc =
2∆γ

(PV − PL)
=

2∆γ

∆ρ∆µ

which identifies with the previous expression, as expected.

Applications.

Putting numbers, Dc is in the range of nanometers and increases with humidity, diverging at RH = 1 (100%
humidity). There are many example and applications for capillary condensation in many different fields: porous
media, membranes, granular systems, biology, protein folding (for which it is merely the reverse capillary
evaporation phenomenon in hydrophobic confinement), etc.
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Chapter 8

Statistical ensembles and
thermodynamics.

In the previous chapters, we have introduced the basic tools of statistical physics and we have showed some
links with thermodynamics and thermodynamic functions. In this chapter, we summarize and discuss more
thoroughly thermodynamic principles on their own. While there is an intimate relationship between the two
fields, it is crucial to handle properly the principles of thermodynamics when investigating many-body systems
using statisticial physics. We will in particular discuss the thermodynamics of phase transitions.

For further details, we refer to the book by H.B. Callen, Callen, (1998) Thermodynamics and an Introduction
to Thermostatistics.

8.1 Back to thermodynamic principles.

8.1.1 Definitions.

We start by a few definitions to lay down the vocabulary:

• State variables: variables which characterize the thermodynamic state of a system (N,P, T, µ, · · · ). One
of the big surprises of thermodynamics is that very few variables are required to describe very complex
systems. This is due to the fact that the systems are very large and therefore can usually be considered
as being only small variations away from their average values.

• Order parameters: these are the parameters that characterize/’quantify’ the state of the system. This
allows to answer the question: is the system a liquid or a solid, a magnet or not, etc.

For example in spin system, i.e. a succession of up/down magnetic moments, the mean value of the
magnetic moments, m, is an order parameter. Indeed it will tell if the system is polarized (m 6= 0) or not
(m = 0). Another example is the liquid/solid transition. If we define:

ρG =
1

N

∑
i

ei
~G·~ri

where ~G is the vector of the reciprocal lattice of the solid (i.e. ~ri · ~G = 2πk where ~ri are the lattice position
of the atoms in the crystal): ρG is going to be 0 for a liquid (no ordering) and 1 for a crystal (perfect
ordering). For the liquid/gas transition, the density is an order parameter.

• State function: a state function is a function of state variables.

• Reversible transformation: A transformation that can be done both ways, i.e. it is a process whose
direction can be ”reversed” by inducing infinitesimal changes to some property of the system via its
surroundings. Throughout the entire reversible process, the system is in thermodynamic equilibrium with
its surroundings. An alternative definition of a reversible process is a process that, after it has taken place,
can be reversed and, when reversed, returns the system and its surroundings to their initial states.

• Intensive parameters: it is any physical property that doesn’t depend on the system size or amount of
matter (ex. T, µ, ρ, P,).

• Extensive parameters: It is any physical property that is proportional to the size of the system or the
quantity of matter in it (ex. V,E, S, F,G,H).

71
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8.1.2 Principles.

First Principle:

The variation of energy of a system is the sum of the work and heat that it receives:

dE = δW + δQ and ∆E = W +Q

While the conservation of energy is a general principle in physics, this first principle implies some further
information. First that at the macroscopic scale, energy is conveyed in various forms: work (’ordered’ form of
energy) or heat (’disordered’ form of energy). Second, an underlying principle is that the energy E is a state
function: E = E(S, V,N). This is not obvious.

Note also that we are going to use the banker’s convention, i.e. what is coming in is positive and what is
going out is negative. So δQ > 0 and δW > 0 is the quantity of received heat (resp. work) for the system.

Second Principle:

There exists a function S, called the entropy, which is a function of the extensive parameters
characterizing the macroscopic state, and such that, in all transformations towards an equilibrium
state in an isolated system, ∆S ≥ 0. The entropy is a state function.

Another formulation of this principle is in terms of constraints (Callen type):
Consider a system under a given constraint. The values taken by the extensive state parame-
ters when the constraint is freed are those that maximize the entropy over all the constrained
equilibrium states.

Let us precise the meaning of this version of the second principle. Let X be a constraint, and the entropy of
the system is a function S = S(E, V,N,X). The second principle states that the equilibrium without constraint
is defined as the one possessing the maximal entropy versus X: Smax = maxX S(X). The value taken by X at
equilibrium, X = X?, is the one maximizing the function S(X).

Link with heat exchange.

For a given system S that performs a reversible transformation we have that:

dS =
δQ

T

Instead, for an irreversible transformation we have that:

dS >
δQ

T

with T being the temperature of the system that is exchanging heat with S.
The first relation is to be thought in terms of the differential relations that we obtained for the energy and

entropy in Chapter 3:

dE = TdS +
∑
i

Xidxi
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where we introduced the generalized forces (Xi) and corresponding variables xi. In a reversible transformation,
the work naturally identifies with δW =

∑
iXidxi, so that the entropy variation is given in terms of the heat

exchange: δQ = TdS. Note that the second relation comes from the fact that if we consider a system S in
contact with a much larger system R, the whole being isolated, then the huge system R can be considered
always at equilibrium and for this ’reservoir’, δQ = T0dSR. Since the whole S + R is isolated, we have during
any transformation: {

dEtot = dES + dER

dStot ≥ 0

so that

dStot = dSs + dSR︸︷︷︸
− δQT0

≥ 0⇒ dSs ≥
δQ

T0

8.1.3 Thermodynamic and heat engines.

A heat engine is a system that exchanges work and heat in cycles. Note that engines have to verify some rules
that follow from the thermodynamics principles. A particularly important one is the impossibility of perpetual
motion of the second kind:

A machine that does a cycle with only one source of heat cannot produce work.

Proof

The key to the proof is to remark that over a cycle, the system under consideration satisfies{
∆E = 0

∆S = 0

This is because both E and S are state functions and one comes back to the initial state at the end of a cycle.
Denoting T0 the temperature of the heat reservoir, we also have the following equations:{

∆E = Q+W = 0

0 = ∆S ≥ Q
T0

⇒ Q ≤ 0 ∧W ≥ 0

So the system necessarily receives work and cannot not produce any.

Two heat sources engine.

We now consider an engine M that takes some heat Q1 from a thermal bath with temperaturer T1 and outputs
work W and heat Q2 to a thermal bath with temperature T2. As above, we can write the general conditions:{

∆E = 0 = Q1 −Q2 −W
∆S = 0 ≥ Q1

T1
− Q2

T2

Now let’s introduce the efficiency of the engine, defined as ν = W
Q1

, i.e. how much work is produced from the
heat Q1. From our equations above we obtain :{

Q2 = Q1 −W
Q2

T2
≥ Q1

T1

⇒ 1− ν ≥ T2

T1
⇒ ν ≤ 1− T2

T1

Hence there is an upper bound on efficiency, and it is impossible to have a perfectly efficient engine, except in
the asymptotic limit T1 →∞.

This concludes our short reminders on basic thermodynamics, but the reader is strongly invited to read
more about it in Callen book or any other good book on thermodynamics.
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8.2 Thermodynamics and ensembles.

8.2.1 Conclusion on the different ensembles.

We have:

microcanonical isolated system N,V,E S(N,V,E)
canonical fixed temperature system N,V, T F (N,V, T ) = E − TS

grand canonical T, µ fixed system µ, V, T Ω(µ, V, T ) = F − µN
isobaric T, P fixed system N,P, T G(N,P, T ) = F + PV

A key aspect is the state variables on which each thermodynamics potential is depending. We also have the
differential equations: 

dE = TdS − PdV + µdN

dF = −SdT − PdV + µdN

dΩ = −SdT − PdV −Ndµ

dG = −SdT + V dP + µdN

8.2.2 Maxwell relations

From the above we immediately get that:

P = − ∂F
∂V

∣∣∣
T,N

µ = ∂F
∂N

∣∣∣
V,T

 ∂P

∂N

∣∣∣∣∣ = − ∂2F

∂N∂V
= − ∂2F

∂V ∂N
= − ∂µ

∂V

So we have:
−S = ∂F

∂T

−P = ∂F
∂V

}
∂S

∂V
= − ∂2F

∂T∂V
= − ∂2F

∂V ∂T
=
∂P

∂T

8.2.3 Equilibrium and release of constraints.

We consider an isolated system and add constraint X to the system. Remember that we stated previously that
equilibrium was defined for:

Seq = max
X
{S(X)}

Intuitively this result states that at equilibrium the system does explore as much of its phase space as possible
so that S = kBT log Ω is maximal.

We can extend the results to systems which are not isolated. Let us for example consider a system S in
contact with a thermostat at temperature T0. The system is described by an extensive variable X, for example
the volume. Now, let us imagine that the system is split in two subsystems, S1 and S2, characterized by the
sub-variables X1 and X2 such that X = X1 +X2. For example, if X is the volume, the system is separated into
two volumes V1, and V2. We consider the dependence of the partition function Z and free energy as a function
of X1, here considered as a variable (or a constraint). The probability to find the system with a value X1 is

p(X1) =
1

Z1∪2

∑
micro states s1,s2

e−βEs1 e−βEs2 δXs1=X1
δXs2=X2=X−X1

where the δ (Kronecker) terms do fix the values of the variable X of the microstate to the imposed ones, X1

and X2 = X −X1. The sums over the microstates do factorize and the previous expression can be rewritten as

p(X1 = V1) =
Z1(X1)Z2(X2 = X −X1)

Z1∪2

Now, using Z1(X1) = e−βF (X1) and Z2(X2) = e−βF (X2), one can rewrite

p(X1) =
1

Ztot
e−βFtot(X1)

with Ftot(X1) = F1(X1) + F2(X −X1). This shows that the probability of occurence of the variable X1 is
given in terms of the constrained free energy.



8.2. THERMODYNAMICS AND ENSEMBLES. 75

Consequences.

The probability is maximal when the free energy Ftot(X1) is minimal. This occurs for

∂Ftot

∂X1
= 0 =

∂F1

∂X1
− ∂F2

∂X2

Since ∂Fi
∂Xi

= xi, the intensive parameters associated to Xi, then the equilibrium condition imposes

x1 = x2

For X ≡ V the volume, then xi = −pi, the pressure, and the equilibrium condition is p1 = p2. For X ≡ N the
number of particles, then xi = −µi/T and the equilibrium condition is µ1 = µ2.

Example of Application.

We consider a system in contact with a bath at T, µ. Then the proper thermodynamic potential characterizing
the system is the Grand potential: Ω = Ω(µ, V, T ) = F − µN .

Let us assume that in practice we actually know an expression for the free energy F . Let us introduce the
free energy per unit volume f(ρ), defined as f(ρ) = F/V , with ρ = N

V . For an ideal system we have shown
previously

fid(ρ) = kBT (ρ log ρλ3
T − ρ)

And more generally the free energy is the sum of the ideal term and an interaction term:

f(ρ) = fid(ρ) + fint(ρ)

For example, a simple model for fint(ρ) within the van der Waals fluid is fint(ρ) = −kBTρ log(1− bρ) − aρ2,
with b an excluded volume and a a parameter characterizing the van der Waals attractive interactions. This
will be studied in the next chapter 8. Now we introduce a constrained grand potential Ωc = V ×ωc(ρ), in which
the density is fixed to its value ρ = N/V by

ωc(ρ) = f(ρ)− µρ

In practice, this quantity is not the equilibrium grand potential, since the density should be fixed to its equi-
librium density for a given chemical potential µ and temperature T . The density ρ or number of particles N
should be therefore considered here as a constraint.

Now, at equilibrium the grand potential will be minimum against the number of particles N (or density ρ):
minN Ω. This imposes:

∂Ωc
∂N

= 0⇒ ∂ωc
∂ρ

∣∣∣∣∣
eq

= 0

so that
∂f

∂ρ

∣∣∣∣∣
eq

= µ.

More generally, the constrained grand potential is a functional (i.e. a function of function) of the density
field ρ(~r)

Ωc = Ωc({ρ}) =

∫
d~r ωc(~r) =

∫
d~r [f({ρ(~r)})− µρ(~r))]

and the minimization of the grand potential versus the constraint ρ(~r), should be done as a functional mini-
mization

δΩc
δρ

(~r) = 0

The functional minimization is described in the Mathematical memo in Chapter 10. Using Ωc = F − µN =∫
d~r (f(ρ)− µρ), this equation rewrites in a more transparent form

∂f

∂ρ
= µ

which states that at equilibrium the chemical potential is homogeneous and equal to the imposed chemical
potential.

This back-and-forth considerations between ensembles will be proove very useful to investigate phase tran-
sitions, see chapter 8.



76 CHAPTER 8. STATISTICAL ENSEMBLES AND THERMODYNAMICS.

8.3 Stability conditions and fluctuations.

As a final point, we also explore the stability condition imposed by the second principle. At equilibrium S must
be maximal, meaning that the entropy as a function of an (extensive) constraint X, S(X), should be a concave
function of X. This imposes at equilibrium

∂S

∂X

∣∣∣∣∣
eq

= 0 ∧ ∂2S

∂X2

∣∣∣∣∣
eq

≤ 0

Similarly, F is minimal at equilibrium and therefore F must be a convex function of (extensive) constraints X,
so that:

∂F

∂X

∣∣∣∣∣
eq

= 0 ∧ ∂2F

∂X2

∣∣∣∣∣
eq

≥ 0

Another way of stating the same thing, is to use the properties of convex functions which shows that

2F (
N

2
,
V

2
, T ) = F (N,V, T ) ≤ F (

N

2
− n, V

2
− v, T ) + F (

N

2
+ n,

V

2
+ v, T )

We note as a side remark that:
∂2F

∂T 2
≤ 0 idem for G,H,P, · · ·

which is general for intensive variables.

Example.

An example is the compressibility factor:

χT = − 1

V

∂V

∂P

∣∣∣∣∣
T

∝

(
∂2F

∂V 2

∣∣∣∣∣
T

)−1

≥ 0 and P = −∂F
∂V

Note that this is in agrreement with:

NkBTρχT = 〈∆N2〉 > 0

8.4 Thermodynamics and phase transitions.

We now discuss the phenomena of phase transitions in the context of thermody-
namics. In this section, we will have a general discussion and explain the general
principles of phase transitions and the corresponding concepts: first and second
order transitions, latent heat, spinodals, double tangent, critical points, etc. We
will then apply these concepts to specific phase transitions in the next chapter.

A prototypical example is the liquid-solid-gas transition, leading to a phase
diagram as shown on the enclosed figure: depending on the values of the pressure
and temperature, the system is in one or the other phase, solid, liquid or gas. It is
already remarkable that changing only very few factors (pressure or temperature)
leads to such drastic changes in the state of the system; and reversly that one can predict the state of the system
only by knowing such a few number of quantities. Phase change occurs at the boundaries of the various regions
in the phase space. A number of remarkable behaviors occurs at these boundaries. This is what we study in
this section, in the context of general thermodynamics. We will examplify the corresponding behaviors in the
next chapter 8, in the context of the statistical physics of interacting systems.

8.4.1 Order parameters and transitions orders.

We have already discussed order parameters, which allows to distinguish the phases under scrutinity: liquid
from gas; as characterized by their density; a magnetic or not state, by measuring the mean magnetic moment:
m = 1

N

∑
i Si, etc. In the following we assume that the system is characterized by an order parameter Φ: for

example Φ = 1 in a given phase 1 and Φ = 0 in another phase 2. Let us now consider the transition between
these two phases, which occurs as the temperature, pressure, chemical potential, or any other state variable
is varied. A key aspect is that one may classify transitions into two main types: first order and second order
transition. This only depends on the behavior of the order parameter Φ at the transition.
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1st Order Transition.

In a first order transition, the order parameter Φ makes a discontinuous jump at the transition. Then the
discontinuity in the order parameter will induce a discontinuity or even a divergence in the first
derivatives of the thermodynamic potential.

First order transition

To give a concrete example of this behavior, let us consider a system of particles in the grand canonical
ensemble. At the liquid-gas transition, the density – which is the order parameter – exhibits a jump ∆ρ from
the gas to the liquid density when the chemical potential is varied from below to above the saturating chemical

potential. Now, the number of particles (i.e. the density) is given by N = −∂Ω
∂µ

∣∣∣∣
T,V

, so that the density jump

in ρ = N/V induces a discontinuity in the first derivative of the grand potential.

2nd Order Transition.

In second order transition, the order parameter Φ is continuous at the transition. The first order derivative
of the thermodynamic potential is continous but there is a discontinuity or even a divergence of the
second derivative of the thermodynamic potentials.

Second order transition

8.4.2 Description of first order transitions, spinodal and coexistence

Instead of making a general and abstract discussion, we illustrate the general concepts emerging for first order
transitions in the case of the liquid-gas transition. All concepts can be applied to any other type of first order
transitions by a proper translation of quantities.

At the liquid-gas transition, the thermodynamic equilibrium conditions are verified between the liquid and
gas phase:

Pl = Pg and µl = µg

Solving these joint equations for a given temperature allows to obtain the density of the coexisting gas and
liquid phases, ρl(T ), ρg(T ). One deduces accordingly the coexistence pressure and chemical potential, Pcoex,
µcoex, which are by definition equal in the coexisting phases. The values are sometimes coined the ’saturation’
pressure and chemical potential.

The transition occurs at the coexistence (or saturation) point. The density ρ is discontinuous, and this
leads to a discontinuity of the first derivative of the grand potential, Ω. Ω has therefore a different behavior
for µ < µcoex and µ > µcoex, as if it is given by two functions, one for the liquid phase and one for the gaseous
phase, the system staying to the minimal value (for Ω, so the maximal value for P ) of the two. We therefore
get a singularity at the crossing point of the two functions.
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Latent Heat.

At the transition the entropy is discontinous:

S = −∂Ω

∂T

∣∣∣∣∣
V,µ

and one introduces a new quantity to characterize this entropy jump, the latent heat of the transition:

Ll↔g = T (Sgas − Sliquid)

Clapeyron Relation.

If we take two pairs of close points symmetric with respect to the transition curve on the P, T graph : A and
A′ on the liquid side and B and B′ on the gas side. Because A and B are at equilibrium, we get that µA = µB
and same for A′ and B′, µA′ = µB′ . Now on each side of the transition curve (on the liquid and gas sides), the
Gibbs-Duhem relation can be written as

dµ =
V

N
dP − S

N
dT

so that one has the relationships

dµA = µA′ − µA =
Vg
N

dP − Sg
N

dT and dµB = µB′ − µB =
Vl
N

dP − Sl
N

dT

But due to equilibrium, dµA = dµB and

vgdP − sgdT = vldP − sldT

where we use v = V
N and s = S

N , then on the transition curve:

dP

dT
=
sg − sl
vg − vl

=
T lg↔l

∆v
with lg↔l =

Ll↔g
N

Transition and free-energy variations

Let us analyze more in detail what is happening at the transition in terms of the free energy. To do so, let
us consider the problem in the grand canonical ensemble. At equilibrium the grand potential Ω = −P V is
a function of (µ, V, T ). To simplify the discussion, we fix the temperature and tune the chemical potential to
control the state of the system. The transition then occurs for a given chemical potential µcoex(T ). Across the
first order transition at µcoex, Ω varies continuously from its values in the gas side to the values on the liquid
side, with a discontinuity in the first derivative; See above figure.

Now, similarly to what we discussed previously, we consider a constrained grand potential, where we fix the
density ρ as a constraint. We define accordingly ωc(ρ) = Ωc

V (ρ|µ, V, T ). In practice, the function ω(ρ|µ, T ) is
constructed from a given free energy, according to

ωc(ρ|µ, T ) = f(ρ, T )− µρ

where f(ρ, T ) = F (N,V, T )/V is the free energy per unit volume; its expression is independent of µ. Then ωc(ρ)
will exhibit two minima which correspond to ρg and ρl. For µ < µcoex, the minimum associated with ρg is the
global minimum, while for µ > µcoex then the minimum associated with ρl is the global minimum; see figure
below. The value of the equilibrium grand potential is ω(ρ = ρmin, µ, T ), i.e. the value of the constrained grand
potential taken at the value of the density at the minimum. When µ = µcoex the two minima are equivalent
and the corresponding value is ωcoex = −Pcoex.

From this graphical analysis, one can sketch the behavior of the density ρ as a function of the chemical
potential: increasing µ, the density will increase smootly in both phases, but exhibit a discontinuity from ρg to
ρl at µ = µcoex.

Spinodals and spinodal transition

We previously discussed the stability conditions for the free energy, namely

∂2F
∂V 2

∣∣∣∣∣
T,N

≥ 0
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Figure 8.1: Graphs of the constrained grand potential per unit volume ω(ρ)|µ, V, T ) = f(ρ, T )−µρ as a function
of density for various different values of the chemical potential µ. The equilibrium density is the minimum of
ω(ρ)|µ, V, T ) over the constrained density ρ.

In terms of the free energy per unit volume, f(ρ, T ) = F
V (N,V, T ), this rewrites

∂2f

∂ρ2

∣∣∣∣∣
T

≥ 0

This can be demonstrated easily. First, the pressure

P = −∂F
∂V

= − ∂

∂V

(
V f(

N

V
)

)
= −f(ρ) + ρf ′(ρ)

Note that this result also comes directly from the definition of the grand potential as

P = −Ω

V
= −F − µN

V
= −f + µ︸︷︷︸

∂f
∂ρ

ρ

Then we deduce
∂2F
∂V 2

= −∂P
∂V

= − ∂

∂ρ
(−f + ρf ′(ρ))

−N
V 2

=
N

V 2
[−f + ρf ′′ + f ]

Then the stability condition can be rewritten as:

0 ≤ ∂2F
∂V 2

=
1

V
ρ2 ∂

2f

∂ρ2
CQFD

We then conclude that stability imposes that the free energy f(ρ) must be convex function of ρ. Any region
in the phase diagram where the free energy is a concave functon of density is unstable. The spinodal curve
is then defined as the points for which f ′′(ρ, T ) = 0:

∂2f

∂ρ2

∣∣∣∣∣
T

= 0

This corresponds to the limit of stability of the system.

Coexistence and double Tangent construction.

Previoulsy, we discussed the behavior of the density in the grand canonical ensemble, where µ, V, T are fixed:
when the chemical potential is increased across µcoex, the density increases with a sharp discontinuity from ρg
to ρl at the transition.

Now, what happens if we rather consider the problem in the canonical ensemble, where N,V, T are fixed ?
Overall the global phase behavior should not depend on the ensemble, and indeed the transition behavior can
be obtained in any ensemble. But there is a difference at the transition. Indeed, if one fixes both N and V , it
is not possible a priori to accomodate the density jump at the transition, with the gas density ρg being very
different from the liquid density ρl. The way this ’paradox’ is solved is that the system becomes inhomogeneous
at the transition: the overall volume separates into two subsystems, where a liquid volume coexists with a gas
volume. This is the phase coexistence.

In practice, introducing the fraction x of gas, the fixed total density ρ of the system will be split into the
two contributions (gas and liquid) according to

ρ = xρg + (1− x)ρl;
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In other words, x = (ρl − ρ)/(ρl − ρg) is the fraction of gas. When increasing
ρ from ρg to ρl, the fraction x of gas in the volume will vary smoothly from 1
to 0. A key point is that the gas volume will have a fixed density ρg and
the liquid volume will have a fixed density ρl. The values for ρg and ρl are
those obtained from the equilibrium conditions: Pg = Pl, µg = µl.

Double tangent construction

This has a graphical interpretation which is very useful to draw the phase diagram, which is the so-called
double-tangent construction. We plot the free energy density f(ρ) as a function of the density and construct
graphically the line which is the “double tangent” to the curve f(ρ), see the graph above. It is easy to realize
that this double-tangent touches the curve f(ρ) in the points ρv and ρl defined by the equilibrium conditions.

Indeed the general equation of a tangent to the curve f(ρ) at the point ρ0 takes the form

y = f ′(ρ0)(x− ρ0) + f(ρ0),

For x = 0 the value crossese the vertical axes at y = −f ′(ρ0)ρ0 + f(ρ0): this is nothing but the pressure
at the density ρ0, since P (ρ0) = f(ρ0) − f ′(ρ0)ρ0. Also the slope of the tangent is f ′(ρ0) = µ the chemical
potential. Hence, the double tangent corresponds to the densities ρv and ρl which have the same slope and same
y-intercept, i.e. same pressure and chemical potential. The double-tangent thus corresponds to Pg = Pl ≡ Pcoex

and µg = µl = µcoex.
Furthermore the free energy for any phase separated state with a gas fraction x is equal to

fmix(ρ) = xf(ρv) + (1− x)f(ρL) ≤ fhom(ρ).

As can be seen on the graph above, this ’mixed’ free energy, which adds up the gas and liquid contribution, is
lower than the homogeneous free energy for the same density f(ρ). This is why the system phases separates,
since it gains free energy by separating itself into two phases. In other words the system does ’convexify’ the
free energy function by phase separating.

Conclusion.

Altogether, we introduced a number of concepts for first order phase transitions: spinodals, phase coexistence,
etc. This is summarized in the general phase diagram enclosed. On this graph the red line is the coexistence
line, while the dashed blue line is the spinodal. The blue region within the spinodal curve is unstable, while
the dotted red zone corresponds to a metastable region: the system is not stable thermodynamically but
mechanically stable. The green line is an isothermal path in the phase diagram, P (ρ, T ).
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8.4.3 Description of second order transitions

We discuss here the general characteristics of second order phase transitions. As above, we describe the behavior
on a prototypical example, which is the phase transition in magnetic systems. We measure here the average
magnetic moment (or spin) m as a function of the temperature (and magnetic field). As shown in the graph in
the previous section, for a vanishing magnetic field B = 0, the systems exhibits a transition from a disordered
phase at high temperature, with m = 0 , to an ordered phase at low temperature m 6= 0. The transition occurs
at a temperature Tc and is continuous (m(T ) is a continuous function below and above the phase transition).
This is a second order phase transition.

Free energy behavior

We plot in the curve below the typical behavior for the free energy F (m) above and below the transition
temperature, T > Tc and T < Tc. For T > Tc the free energy has a single minimum at m = 0; for T < Tc it
exhibits two minima ±m (one being the symmetric of the other, which is a consequence of an intrinsic symmetry
of the system). An important feature of second order phase transitions is that the susceptibility of the system

T<Tc

T>Tc

m

F(m)

diverges at the transition point. The susceptibility quantifies how the system reacts to the magnetic field (for
low field):

χ =
dmeq

dB

∣∣∣∣∣
B=0

Let us show this result. To calculate the susceptibility, one has to introduce the effect of the magnetic field
on the system, which is described by the free energy

F̃ (m,B) = F (m)−mB

At equilibrium,

∂F̃

∂m
= 0⇔ ∂F

∂m

∣∣∣∣∣
meq(B)

= B

For low magnetic field, we make a first order expansion in m and get:

∂F

∂m

∣∣∣∣∣ (meq(B + dB))︸ ︷︷ ︸
meq(B)+dmeq

= B + dB ⇒
��

�
��
�∂F

∂m

∣∣∣∣∣meq(B) +
∂2F

∂m2

∣∣∣∣∣× dmeq =��B + dB

This shows that:

χ =
dmeq

dB

∣∣∣∣∣
B=0

=

(
∂2F

∂m2

∣∣∣∣∣
B=0

)−1

Now, when T → Tc, the second derivative of the free energy vanishes ∂2F
∂m2

∣∣∣∣∣
B=0

→ 0. This can be easily

understood from the previous graph of F (m) since going from a single minimum m = 0 for T > Tc to two
symmetric minima m 6= 0 for T < Tc, will make the second derivative vanish at T = Tc.

A immediate consequence is

χ =
∂m

∂B

∣∣∣∣∣
B=0

T→Tc−→ ∞

and this shows that the susceptibility χ diverges at the transition point. This is a key behavior of second order
phase transitions.
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Transitions of the second order, critical exponents.

In second order phase transitions, one can pass continuously from one phase to the other. The transition occurs
via a diverging length scales. At the transition point, one can show that this leads to ’scaling laws’ for the
various thermodynamic quantities. In particular, one can write

CV ∼ |T − TC |−α,m ∼ |T − TC |β , χ = − ∂Φ

∂B

∣∣∣∣∣
B=0

∼ |T − TC |−γ

This is associated with the divergence of the correlation length in the system, which goes to infinity at Tc. What
is remarkable is that these critical exponents (α, β, γ, · · · ) are universal and depend only on the symmetries of
the problem.

We will not discuss further this aspect in the present lecture.



Chapter 9

Quantum statistics.

In this last chapter, we introduce the general concepts of quantum statistics. This should be considered as an
introduction to the field, and we leave further insights in the domain to subsequent advanced quantum physics
and condensed matter courses.

In some sense, quantum statistics is somewhat easier than classical statistics because contrary to the classical
case everything is always discrete and it is easier to count microscopic states. For example questions around the
N ! factors (indiscernability and Gibbs Paradox) or the discretization of the phase space are no longer specific
issues. However we will merely focus here on non-interacting particles. First because interactions between
particles becomes very difficult to handle in quantum description. But the main reason is that quantum effects,
in particular originating in the symmetrization or antisymmetrization of the wave function, already leads to
highly non-trivial behaviors.

9.1 Quantum states and partition functions.

We could summarize quantum physics by saying that we are passing from the concept of ’particles’ to the concept
of ’waves’. Atoms are described as wave packets. We have already introduced the De Broglie wavelength:

λT =

√
h2

2πmkBT

We are in a ’classical’ case when λT < [ distance between particles ∼ ρ−1/3]. However when λT ∼ ρ−1/3

i.e. ’low temperatures’ orvery high densities, quantum effects show up. We denote by |ψ〉i the wavefunction

associated to the state i and we have Ĥ |ψ〉i = Ei |ψ〉i. The difficulty of the quantum aspects comes from the
fact that we have a ’double statistics’. We first have a statistics due to the quantum effects and uncertainty, to
which we add the statistics and combinatorics of the many-body problem itself.

Let us assume that we have a probability pi to observe a certain state i. This quantity depends on the
statistical ensemble considered and we give its expression in the next section. But a few general results can be
already obtained. If we consider the states |ψ〉i with associated probabilities pi, the average of a variable A is
then calculated as

Ā =
∑

quantum statesi

pi 〈ψi|A |ψi〉

We then introduce the ’density operator’ as

ρ =
∑

quantum statesi

pi |ψi〉〈ψi|

so that averages can be rewritten in a compact form as

Ā = Tr(ρA)

The proof is quite simple: denoting as |k〉 an orthonormal basis of our Hilbert space, then

Tr(ρA) =
∑
k

〈k| ρA |k〉 =
∑
k,i

pi 〈k|ψi〉 〈ψi|A |k〉 =
∑
i

pi 〈ψi|A

(∑
k

|k〉〈k|

)
︸ ︷︷ ︸

Id

|ψi〉 =
∑
i

pi 〈ψi|A |ψi〉 = Ā

Note also that:
pi = 〈ψi| ρ |ψi〉 ∧ 〈ψi| ρ |ψj〉 = 0 if i 6= j
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Let us consider a basis |ui〉 of quantum eigenstates for the Hamiltonian H of the system, it verifies

H |ui〉 = Ei |ui〉

In this basis the elements of the density operator are

ρij = 〈ui| ρ |uj〉 = pij = pi δi,j

9.1.1 Statistical Ensembles

We now describe the statistical probability pi. This follows the same lines as for the classical description of
statistical ensembles, which we discussed in the previous chapters.

Micro-canonical ensemble

ρij =
1

Ω
δi,j if E < Ei < E + ∆E; 0 otherwise

where:
Ω =

∑
quantum state i
E≤Ei≤E+∆E

1

The probability of a quantum microstate i is accordingly pi = 1
Ω .

Canonical ensemble

Extending on the classical case, the density operator takes the form

ρ =
1

Z
e−βH

where
Z =

∑
quantum states i

e−βEi = Tr
[
e−βH

]
In the basis |ui〉 of eigen states of the hamiltonian H, one has therefore

ρij =
1

Z
e−βEi δi,j

and the probability of the microscopic state i with energy Ei is:

pi =
1

Z
e−βEi

The average of a quantity A is therefore

Ā = Tr(ρA) =
1

Z
e−βEi Aii

Grand Canonical ensemble

Extending again on the classical case, we write similarly that:

pi =
1

Θ
e
−Ei+µni
kBT with ni the occupation number of the state i

The grand partition function is accordingly:

Θ =
∑

quantum state i

e−β(Ei+µni) = Tr
[
e−β(H−µN)

]
The main focus is on the quantum states i rather than on particles.

9.2 Two examples: harmonic oscillator and black body radiation

We will now examplify these principles on two examples: the harmonic oscillator and the black body. These
example highlights two main notions of quantum statistics: (i) the discretized/quantized states and (ii) the
density of state.
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9.2.1 Harmonic Oscillator.

We consider the so-called Einstein model of a vibrating crystal. This model extends on the classical oscillator
models, the predictions of which – in particular for the thermal capacitance - do not match the experimental
results at low temperature.

We consider N sites on a lattice, each site being associated with a harmonic oscillator with characteristic
frequency ω0 (in all three directions). All the oscillators are assumed to independent. There are accordingly 6N
degrees of freedom in total and in the classical description one would predict that the energy is E = 3NkBT
and the thermal capacitance C = dE/dt = 3NkB . The predictions of the quantum statistics depart form this
prediction, as we will see.

Partition function.

The oscillators being independent, one can write

Z =
∑

states i

e−βEi =

( ∑
1D states i

e−βEi

)3N

≡ z3N

where the last sum is over the eigenstates of a 1D harmonic oscillator.
The energy levels of a harmonic oscillator are discretized according to

En = ~ω0

(
1

2
+ n

)
.

We do not demonstrate this classical result here. The partition function for a 1D harmonic oscillator then takes
the form

z =

+∞∑
n=0

e−β~ω0( 1
2 +n) = e

− ~ω0
2kBT

+∞∑
n=0

qn︸︷︷︸
q=e−β~ω0

=
e−β

~ω0
2

1− e−β~ω0

The free energy follows immediately as

F = −kBT logZ = −3N

2
~ω0 + 3NkBT log

[
1− e−β~ω0

]
Mean occupation number.

The mean occupation number is defined as

〈n〉 =
1

z

+∞∑
n=0

ne−β~ω0( 1
2 +n) =

∑
n ne

−αn∑
n e
−αn = − ∂

∂α
log
∑
n

e−αn︸ ︷︷ ︸
1

1−e−α

where α =
~ω0

kBT

This leads to

〈n〉 =
1

eβ~ω0 − 1

Then the average total energy is also given by:

Etot = 3N~ω0(〈n〉+
1

2
) = 3N~ω0

[
1

eα − 1
+

1

2

]
= 3N

~ω0

2

1

tanh ~ω0

2kBT

We remark that Etot = 3NkBT in the limit ~ω0

kBT
� 1 (i.e. as T goes to ∞) and one recovers, as expected, the

classical case. However in the quantum case the thermal capacitance is given by:

C =
dE

dT
= 3NkB

 ~ω0

2kBT

sinh
(

~ω0

2kBT

)
2

which depends strongly on the temperature and vanishes at low temperature. This is due to the fact that

exciting the oscillators requires a finite, discrete energy step, ~ω0, with a probability ∝ exp
[
− ~ω0

kBT

]
. For low

T , we actually get that the thermal capacitance behaves as C ∼ 1
T 2 e
− ~ω0
kBT . The thermal capacitance decreases

strongly for low T , in contrast with the classical result which predicts a constant capacitance. So this is in
fair agreement with the experimental results, but the decrease is too strong. This discrepancy is due to the
over-simplified model of the crystal which only involve a single harmonic frequency. However, solids exhibit a
spectrum of harmonic frequencies, with the excitation of phonon modes, and this has to be properly modeled
to reproduce the experimental results. This modelling goes beyond the present course.
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kT* = ℏω0

T

C

9.2.2 Photon gas and black-body radiation.

We consider a second example, which played a seminal role in quantum physics. This concerns the behavior of
a gas of photons in thermalizing box. In this box at fixed temperature T , photons are emitted and adsorbed at
the surface, and a thermodynamic equilibrium is established for the population of photons inside the box.

A photon exhibits a wave/particle duality and its energy writes

ε = ~ω = |~p|c, ~p = ~~k, ω = ck

where ω is its frequency, ~p its momentum, and ~k the wave vector. Furthermore photons can have two polariza-
tions.

The chemical potential of the photons is zero since they are created and adsorbed by the box. In other
words, if one calculates the free energy for a given number of particles FN , then the number of photons in the
box N will verify µ = ∂F

∂N = 0.

ZN =
∑

microstates with N photons

e−βEs

The grand canonical function is accordingly

Θ =
∑

microstatess

e
µN−Es
kBT

since µ = 0.
In order to calculate the partition function, we will make a slight change in perspective to rewrite the sum

over microstates in terms of a sum of occupied energy levels. Indeed the previous picture of a microstate
corresponds to:

photon 1 → quantum state λ1

photon 2 → quantum state λ2

. . .
photon N → quantum state λN

Now we can equivalently describe the microstate as

quantum state λ1 → n1 photons
quantum state λ2 → n2 photons

. . .
quantum state λN → nN photons

Remember that photons are indistinguishable. Defining a microstate therefore corresponds to the
repartition of the occupation numbers ni of each quantum level. In other words, each microstate will
be characterized by the numbers n1, n2, .. and this allows us to re-write the partition function as

Θ =
∑

microstatess

e−βEs =
∑
n1

∑
n2

∑
n3

. . . e−βE(n1,n2,n3,... )

Now the energy of the microstate is
Es = n1ε1 + n2ε2 + · · ·
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and

Θ =
∑
n1

∑
n2

∑
n3

. . . e−β
∑
i niεi

and one deduces

Θ =
∑
n1

e−βn1ε1
∑
n2

e−βn2ε2
∑
n3

e−βn3ε3 . . .

=
∏

quantum states i

(∑
ni

e−βniεi

)
(9.1)

Remark that the grand-canonical formalism is crucial for the factorization. We then introduce a crucial
quantity:

ζi =
∑
ni

e−βniεi

This allows us to re-write:

Θ =
∏

quantum states i

ζi

Furthermore the probability of finding the system in the microstate s, defined by its occupation numbers ni, is
given by:

P(s) =
e−βn1ε1

ζ1

e−βn2ε2

ζ2
· · ·

For the photon gas, the function ζi involves a sum from ni = 0→∞ and

ζi =

+∞∑
ni=0

e−βniεi =
1

1− e−βεi

Plugging this back in the partition function gives:

Θ =
∏

quantum states i

1

1− e−βεi

and we deduce the grand potential

Ω = −kBT log(Θ) = −kBT log
∏

quantum states i

1

1− e−βεi
= kBT

∑
quantum states

log
(
1− e−βεi

)
We need now to specify to energy of the quantum levels. For the photon gas, the energy is quantified in terms of
electromagnetic modes with wave vectors ~k = 2π

L (nx, ny, nz) where L is the size of the box and the corresponding
energy is

εnx,ny,nz =
2π

L
~c
√
n2
x + n2

y + n2
z

so that

Ω = 2 · kBT
∑

nx,ny,nz

log
(

1− e−β
2π
L ~c
√
n2
x+n2

y+n2
z

)
where the factor 2 stems from the two polarizations. This sum can be calculated by going to a continuum
version, using ∑

quantum states

(·) = 2
∑

nx,ny,nz

(·) = 2

∫
d3~k

(2π/L)3
(·)

This is valid for L→∞. This yields finally

Ω = kBT · 2 ·
∫

d3~p

( 2π
L )3~3

log
(

1− e−β|~p|c
)

= kBT
8πV

h3

∫ +∞

0

p2dp log
(
1− e−βpc

)
We deduce the pressure as:

P = −Ω

V
= −kBT

8π

h3

∫ +∞

0

p2dp log
(
1− e−βpc

)
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The average energy can be calculated as:

〈E〉 =
∑

quantum states i

〈ni〉εi with 〈ni〉 =

∑
ni
nie
−βniεi∑

ni
e−βniεi

= − 1

β

∂

∂εi
log ζi =

1

eβεi − 1

Then by passing from the sum to the integral, this leads to the following for the energy:

〈E〉 = 2V

∫
d3p

(2π)3~3

pc

eβpc − 1
=

8πV c

h3

∫ +∞

0

dp
p3

eβpc − 1

An integral by part shows immediately that Ω = −〈E〉/3. Furthermore using the analytical formula,∫ ∞
0

x3dx

ex − 1
=
π4

15
,

we deduce that
〈E〉
V

=
π2

15

(kBT )4

(~c)3

Spectral density.

The spectral density u(ω) is defined as u(ω) = n(ω)~ω, with n(ω)dω the density of states within dω. It obeys

〈E〉 =

∫ ∞
0

dω u(ω)

This leads to

u(ω) =
h

2π3c3
ω3

eβ~ω − 1

This is called Planck’s Law. The maximum of u(ω) occurs with ~ωmax = 2.82kBT . For the sun, the measured
maximum occurs at a wavelength λmax ∼ 500nm, and assuming that it behaves as a black body, this points to
a surface temperature of the sun of T ∼ 5700K. For the human body, with T ∼ 300K, the maximum occurs at
a wavelength λmax ∼ 10µm corresponding to infra-red (hence the infra-red night vision).

Emitted Power.

One of the fundamental assumptions of black body radiation is that the emitted power is perfectly balanced by
the received power. The received power can be calculated as the integral over all angles θ of the power received
by a unit surface from a direction θ. The latter is ε(ω)×n(ω)× c cos θ, with ε(ω) = ~ω. The total flux rewrites,
using u(ω) = n(ω)~ω,

P =

∫
2π sin θdθ

4π

∫
dω u(ω) c cos θ

per unit solid angle, and one deduces that P = 1
4 〈
E
V 〉 × c. This shows that:

P = σT 4, where σ =
2

15

π5k4
B

h3c2

This is the law of Stefan and its gives the emitted power per unit surface. The prefactor is calculated as
σ = 5.67 10−8W.m−2.K−4.

9.3 Bosons and fermions without interactions.

9.3.1 Indiscernability and symetrisation.

In particles without interactions we can always split the Hamiltonian as

H = H(1) +H(2) + · · · ,

A solution to the Schrödniger equation, H |ψ〉 = E |ψ〉 can then be written as

|ψ〉 = |ψλ1
(1)〉 ⊗ |ψλ2

(2)〉 ⊗ · · · ,

where the energy is E = Eλ1
+ Eλ2

+ · · · , with Eλ2
the eigenvalue of the equation H(i) |ψλi〉 = Ei |ψλi〉. The

solution |ψ〉 = |ψλ1
(1)〉 ⊗ |ψλ2

(2)〉 ⊗ · · · , corresponds to particle 1 in quantum state λ1, etc.
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However, this description consider the particles as discernable and does not respect indiscernability: the
state of the system i should not be altered if one exchanges one particle by another. Let us describe the state
of the system as |ψ(1, 2, 3, · · · , N)〉 where i characterizes the state of the i-particle (maybe including its spin
variable as well). Then, if one permutes two particles, the wave function should be equal up to a phase c:

|ψ(1, 2, 3, · · · , N)〉 = c |ψ(2, 1, 3, · · · , N)〉

We then permute a second time, and this leads to the condition

|ψ(1, 2, 3, · · · , N)〉 = c2 |ψ(1, 2, · · ·N)〉 ⇒ c2 = 1

So if c = 1 the function is symmetric since |ψ(1, 2)〉 = |ψ(2, 1)〉: these particles are called boson. if c = −1
then the function is anti-symmetric since |ψ(1, 2)〉 = − |ψ(2, 1)〉, these particles are fermions. A remarkable
result of quantum mechanics is the spin-statistics theorem1: bosons are particles with integer spins; fermions are
particles with semi-integer spins. For example, photons and Helium 4 particles are bosons. Electrons, protons,
neutrons, Helium 3 particles are fermions.

An important consequence is the Pauli principle: one cannot describe a antisymmetric quantum state with
fermions in the same state. Hence, two fermions cannot be in the same individual quantum state.

If two fermions share the same spatial wavefunction, they must have different spin.

Example: 2 level system with 2 particles

We have two particles in a system with two energy levels λ1, λ2. Then for the bosonic case the symmetrized
wave function is

|ψ〉 =
1√
2

(|1 : λ1〉 ⊗ |2 : λ2〉+ |1 : λ2〉 ⊗ |2 : λ1〉)

As for the fermionic case the antisymmetrized wave function is

|ψ〉 =
1√
2

(|1 : λ1〉 ⊗ |2 : λ2〉 − |1 : λ2〉 ⊗ |2, λ1〉)

In summary, for two particles in a two energy level system, one has the following possible states:

Note that if one includes spin, the wave function combines the orbital and spin wave function, |ψ〉 = |ϕ〉⊗|χ〉
and the (anti-)symmetry principle applies overal to this combination. This implies for example that two fermions
can coexist in a given energy level provided their spin are different.

1Pauli, Phys. Rev. 58 716 (1940)
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These considerations generalize to N independent fermions and the anti-symmetrization of the wave function
takes the form of a matrix determinant, the so-called Slater determinant, as:

|ψ〉 =
1√
N !

∣∣∣∣∣∣∣∣∣
|ψ(1 : λ1)〉 |ψ(1 : λ2)〉 |ψ(1 : λN )〉
|ψ(2 : λ1)〉 · · ·

. . .

|ψ(N : λN )〉

∣∣∣∣∣∣∣∣∣
The notation |ψ(i : λj)〉 indicates the wave function of the particle i in the λj quantum state.

For N independent bosons, the symmetrization of the wave function writes

|ψ(1, 2, · · · , N)〉 = C
∑
σ∈SN

N⊗
i=1

|ψ(σ(i) : λi)〉

where σ is a permutation and the normalization constant is equal to C = (N !
∏
iNj)

−1/2, with Nj the number
of particles in the same quantum state λj .

We conclude by the question of indiscernability. Indiscernability is naturally accounted for in the quantum
framework. In the classical calculations we introduced the N ! term to take into account the indiscernability of
the particles. This is an approximation which is valid in the classical limit. It can be derived explicitly in the
classical limit. We refer to the book by Kardar, “Statistical Mechanics of Particles”, Chap. 7.2 (p184) for a
discussion about this question, which we do not reproduce here.

9.3.2 Grand canonical partition function

The symmetrization or anti-symmetrization of the wave function makes calculations of the partition function
really difficult when the number of particles is fixed, even for non-interacting particles.

However these calculations become far easier in the grand canonical ensemble. The general form of the grand
partition function is:

Θ =
∑

microstates s

eβ(µNs−Es)

And we again take the point of view that we already introduced for the gas of photons, and which describes
the microscopic quantum states in terms of the occupation number of quantum levels. This means that we now
describe the quantum microstate as

quantum state λ1 → n1 particles
quantum state λ2 → n2 particles

. . .

and the microstate is fully defined by the set of occupation numbers {n1, n2, . . . }. The total number of particles
for a given microstate is:

Ns =
∑
i

ni

and the energy

Es =
∑
i

niεi.

wherre εi is the energy of the quantum level i (eigenvalue of the one-particle hamiltonian) and the sum runs over
an (a priori) infinite number of quantum levels i. Fixing Ns would lead to considerable combinatoric difficulties
and working in the grand canonical ensemble – where Ns is not fixed – allows to bypass this difficulty. We can
therefore rewrite the previous sum over microstates s as a sum over the occupation of quantum levels:

Θ =
∑
n1

∑
n2

· · · eβ(µ
∑
i ni−

∑
i niεi)

where i denotes the i-th quantum state and ni its occupation number. There is an infinite number of sums, as
many as the number of energy levels. For non-interacting systems, this sum factorizes as

Θ =
∏
i

∑
ni

eβ(ni(µ−εi))

︸ ︷︷ ︸
ζi

≡
∏
i

ζi
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Fermions

For fermions the problem is further simplified since the exclusion principle gives that ni = 0 or ni = 1, since
two fermions cannot be in the same quantum level. Then ζi simplify immediately to:

ζi =

1∑
ni=0

eβ(ni(µ−εi)) = 1 + eβ(µ−εi)

The partition function hence follows as

Θ =

∞∏
i=1

(
1 + eβ(µ−εi)

)
We can also calculate the average occupation number of a given level i, 〈ni〉, as

〈ni〉 =

∑
ni=0,1 nie

β(µ−εi)ni∑
ni=0,1 e

β(µ−εi)ni

And this shows that the average occupation number in the quantum state i is

〈ni〉 =
1

eβ(εi−µ) + 1

This important result is called the Fermi-Dirac distribution for fermions.

Bosons

For the bosons, there is no restriction on the occupation number of a given quantum level and we have that
ni = 0, . . .∞. Hence we obtain:

ζi =

+∞∑
ni=0

eβ(µ−εi)ni =
1

1− eβ(µ−εi)

We deduce the partition function hence follows as

Θ =

∞∏
i=1

1

1− eβ(µ−εi)

The average occupation number of a given level for bosons is then

〈ni〉 =

∑∞
n=0 ne

β(µ−εi)n∑∞
n=0 e

β(µ−εi)n
= − 1

β

∂

∂εi
log ζi

leading to the Bose distribution for bosons

〈ni〉 =
1

eβ(εi−µ) − 1

Average number of particles

Following the same lines we can calculate the average number of particles in the system as:

〈N〉 =
∑
i

〈ni〉 =
∑
i

1

eβ(εi−µ) ± 1

where + is for fermions and − for bosons.

Average Energy.

Similarly the average energy of the system is :

〈E〉 =
∑
i

〈ni〉εi =
∑
i

εi
eβ(εi−µ) ± 1

All these results apply generally to non-interacting bosons and fermions. To be more specific, one needs
to specify the quantum energy levels εi. In the following we apply these results to free particles (bosons and

fermions) confined in a box. Accordingly the indivudal particle hamiltonian reduces to its kinetic part H = p̂2

2m .
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9.4 Gas of fermions.

The energy levels of a free fermion are given simply by ε(~k) = (~k)2

2m = p2

2m . One can assume periodic boundary
conditions on the box of size L (to simplify) and the wave number k is accordingly quantified as

~k =
2π

L
(nx, ny, nz).

with nx, ny, nz = 0, . . .∞; for each quantum numbers nx, ny, nz, there is also a finite number of spin states, say
typically two values for spin 1/2.

Then we get the following expression for the grand potential:

Ω = −kBT
∑
i

log(ζi) = −kBT
∑
i

log
(

1 + eβ(µ−εi)
)

=∑
→
∫ −2kBT

∫
d3~k

(2π/L)3
log[1 + eβ(µ− (~k)2

2m )]

where the factor 2 stems from the 2 spin values.
The pressure is found by taking P = −Ω

V and the density is:

ρ(µ, T ) =
〈N〉
V

=
1

V

∑
i

1

eβ(εi−µ) + 1
= 2

∫
d3~k

(2π)3

1

eβ(
(~k)2

2m −µ) + 1

We introduce the fugacity as z = eβµ.

High Temperatures.

In this regime, z → 0 at high temperatures. Then the formula for the pressure simplifies to:

P = ρkBT

(
1 +

ρλ3
T

27/2
+ · · ·

)
Low Temperatures.

At low temperature, the distribution 〈n〉(ε) reduces to a step function

〈n〉(ε) T→0−→ Θ(µ− ε)

where Θ here is the heavy side step function.
We introduce εF the Fermi energy, which is the value of the chemical potential calculated in terms of the

density at low temperature. We define accordingly εF = (~kF )2

2m . Using the previous result for 〈n〉(ε), one can
calculate the averaged density ρ = N/V as

〈n〉 T→0
= 2

∫
k<kF

d3~k

(2π)3
· 1

giving

ρ =
1

3π2
k3
F

This gives reversly kF as a function of the average density ρ:

kF =
(
3π2ρ

)1/3
The average energy can be estimated as well as

E
T→0
= 2V

∫
k<kF

d3~k

(2π)3

(~k)2

2m

This leads to E/V = ~2

10π2m

(
3π2ρ

)5/3
. The pressure follows as

P =
2

3

(3π2)5/3

10π2

~2

m
ρ5/3

Note that the temperature does not appear in this expression, meaning that there is a finite pressure at vanishing
temperature ! This is a consequence of the Fermi exclusion.
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9.5 Gas of bosons and condensation of Bose-Einstein.

We now focus on a gas of free bosons. As we will highlight there is a singularity in the free energy emerging at
a finite temperature, pointing to the existence of a phase transitionn in this non-interacting system. This is the
so-called Bose-Einstein condensation.

9.5.1 Grand potential and pressure

For bosons the grand potential writes

Ω = −kBT log Θ = −kBT
∑

quantum state i

log
1

1− e−β(εi−µ)
.

and the pressure is accordingly

p =
kBT

V

∑
quantum state i

log

(
1

1− e−β(εi−µ)

)
.

We follow the same lines as for fermions, and write that the energy level of individual quantum state is

ε(~k) =
p2

2m
=

(~~k)2

2m

with the wave number quantified as ~k = 2π
L (nx, ny, nz). The sum over quantum states i is calculated as

∑
Q state i

(·) =

∫
d3~k(
2π
L

)3 (·)

and we obtain:

P =
kBT

V

∫
d3~k(
2π
L

)3 log
1(

1− e−
ε(~k)−µ
kBT

)
We then get (using V = L3):

βP =

∫
d3~k

(2π)3
log

(
1

1− ze−
~2k2

2mkBT

)
=

∫ +∞

0

4π

(2π)3
k2dk log

(
1

1− ze−
~2k2

2mkBT

)

Now making the change of variables x2 = ~2k2

2mkBT
, we find :

βP =
1

2π2

(
2mkBT

~2

)3/2 ∫ +∞

0

x2dx log

(
1

1− ze−x2

)
We introduce the de Broglie wave length λT = (h2/2πmkBT )1/2 and rewrite the pressure as

βP =
4√
π

1

λ3
T

∫ +∞

0

x2dx log

(
1

1− ze−x2

)
Now we introduce some special functions gα(x) as

gα(X) =

+∞∑
l=1

X l

lα

This allows to rewrite the pressure in simple terms. Indeed expanding the log as a power serie we obtain:

log

(
1

1−X

)
=

+∞∑
l=1

X l

l

and plugging this into the integral we get that:∫ +∞

0

dxx2 log

(
1

1− zex2

)
=

+∞∑
l=1

1

l

∫ +∞

0

dxx2zle`x
2

=

+∞∑
`=1

z`

`

∫ +∞

0

dxx2e−`x
2
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From which we get the final result:

βP (z) =
1

λ3
T

g5/2(z)

with z = exp[βµ] the fugacity.
We can make similar estimate for the density ρ = N/V , or calculate directly

ρ =
∂P

∂µ

∣∣∣∣∣
T

= z
∂βρ

∂z

∣∣∣∣∣
T

= z
∂

∂z

[
1

λ3
T

g5/2(z)

] ∣∣∣∣∣
T

Using

z
∂

∂z
g5/2(z) = z

+∞∑
`=1

1

`5/2
`z`−1 = g3/2(z)

we then obtain the final result for the density:

ρ =
1

λ3
T

g3/2(z)

We have therefore the pressure and density as a function of the chemical potential µ (or fugacity z = exp[βµ])
and temperature T .

9.5.2 Bose Einstein Condensation.

As we will immediately observe, a singularity occurs when z = 1. Indeed let us plot the density as a function
of the fugacity, or in dimensionless form ρ(z)λ3

T = g3/2(z), see enclosed figure.

The function g3/2(z) has a vertical asymptote for z = 1 at its value g3/2(z = 1) = 2.612 . . . and it is not defined
(infinite) for z > 1. The curve for the density then stops at a maximal value ρmax = λ3

T × g3/2(1). This raises
mathematical issues when one wants to solve the equation ρ as a function of z in order to get the equation of
state P (ρ, T ). There are indeed two behaviors depending on the temperature:
- For ρ and T such that ρλ3

T < g3/2(1) = 2.612 then the parametric solution ρ(µ) (or ρ(z)) can be inverted
as µ(ρ) (or z(ρ)). This can be done e.g. graphically on the previous graph. The equation of state follows
immediately, as P (ρ, T ).
- For ρ and T such that ρλ3

T > g3/2(1) = 2.612, then there is no solution for ρ as a function of z = eβµ.
This defines a Bose-Einstein temperature as

ρ

(
h2

2πmkBTBE

)1/2

= 2.612 . . .

Now what occurs for T < TBE ? The origin of the problem comes from the fundamental level. There is
indeed a singularity of the Bose distribution which diverges as the fugacity z → 1 for the fundamental state
ε = 0. The ocupation number of this fundamental state writes

〈n〉0 =
1

1
z − 1

=
z

1− z
z→1−→∞



9.5. GAS OF BOSONS AND CONDENSATION OF BOSE-EINSTEIN. 95

Hence there is an infinite number of particles in the fondamental state when z = 1. In the previous representa-
tion, where the number of particles was written as

N =
∑

Q states i

1

eβ(ε−µ) − 1

there is therefore a mathematical difficulty when passing from the discrete sum to the continuous integral, since
we assumed that no singularity occured. However if the number of elements in the fundamental state diverges,
then this cannot hold anymore and we have to separate the fundamental state from the rest of the terms in the
sum. One should therefore separate the sum as

N = N0 +
∑
~k 6=~0

where N0 = 1
1
z−1

and the second term now behaves in a regular way. In other words:

N = N0 + V

∫
d3~k

(2π)3
〈n~k〉︸ ︷︷ ︸

1

λ3
T
g3/2(z)

with N0 = 〈nε=0〉 = z
1−z which diverges for z = 1. An important remark is that ’diverging’ here means that N0

becomes macroscopic when z = 1. In other words, N0 is proportional to the volume V : N0 ' 1/(1− z) ∝ V .
From the previous equation, we deduce the number of particles in the fundamental state as

N0

V
=
N

V

(
1−

g3/2(z)

ρλ3
T

)
For ρλ3

T > g3/2(1) (z saturates to 1), we now obtain

N0

N
≈ 1− 2.612

ρλ3
T

In terms of the Bose-Einstein temperature defined above, this leads toN0

N = 1−
(

T
TBE

)3/2

, T < TBE

N0

N = 0, T > TBE

This demonstrates that the fundamental state becomes macroscopically filled ! This is a very important result,
which had and still has a strong importance in physics.

Pressure.

Thermodynamic quantities can be calculated for T < TBE following the same lines. However it can be shown
that the fundamental state does not contribute to the pressure. If we perform the same separation as before
between the fundamnental state and the rest (~k = ~0 and ~k 6= ~0), we get:

P =
kBT

V

∑
Q states i

log[
1

1− e−β(εi−µ)
] =

kBT

V
log[

1

1− z
] +

kBT

V
L3

∫
d3~k

(2π)3
log[

1

1− e−
ε(~k)−µ
kBT

]

The integral term is exactly the same as previously, and only the first term adds a contribution. However:

kBT

V
log

1

1− z
≈ kBT

V
logN0 ∼

log V

V
� 1

So we can neglect this term and the pressure is entirely determined by the non-singular, integral term. We thus
obtain

ρλ3
T < 2.612⇒ βP =

1

λ3
T

g5/2(z), ρλ3
T > 2.612⇒ βP =

1

λ3
T

g5/2(1)

Energy.

The energy is given by:

E =
3

2
PV

with the previous result for the pressure. One can deduce the thermal capacitance.
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Conclusions.

The application of these concepts are numerous and Bose-Einstein condensation occurs in many different systems
and was exhaustively investigated experimentally. A classical example is the transition observed for Helium 4
at 2.18 Kelvins from an ordinary liquid towards a superfluid, which can be considered as a kind of Bose-Einstein
condensation. However interactions are never negligeable.



Chapter 10

Appendix: Mathematical memo

Notes in french
Ces notes n’ont pas vocation de rigueur et doivent être utilisées comme un mémo pratique pour quelques outils

techniques utilisés usuellement en physique. Je renvoie vers les ouvrages appropriés pour des dévloppements plus
poussés et rigoureux. Voir par exemple le cours de méthode mathématiques pour physicien de J-B Zuber:
https://www.lpthe.jussieu.fr/∼zuber/Cours/L3 2013.pdf

10.1 Multiplicateurs de Lagrange

La méthode des mulitplicateurs de Lagrange est utilisée lorsque l’on veut maximiser ou minimiser une fonction
à plusieurs variables en présence d’une contrainte.

Le principe: Les solutions {x̃i} qui extrémalisent une fonction à plusieurs variables z = f(x1, x2, . . . , xn) en
présence d’une contrainte implicite C(x1, x2, . . . , xn) = 0, sont les extréma de la fonction

F (x1, x2, . . . , xn) = f(x1, x2, . . . , xn)− λ× C(x1, x2, . . . , xn)

dans laquelle la contrainte C est libérée. Le paramètre λ (multiplicateur de Lagrange) est calculé in fine pour
que la contrainte soit vérifiée. C’est la méthode des multiplicateurs de Lagrange.

10.1.1 Un exemple typique

On considère un cylindre de hauteur h et de rayon a. On veut connaitre les dimensions du cylindre qui maximise
la surface sachant que le volume est fixé. Cela revient donc à maximiser la fonction

S(a, h) = 2πa2 + 2πah

avec la contrainte V = πa2 h=cste. La solution évidente est de calculer h en fonction de a, h = V/πa2 et de
remplaxer dans l’équation précédente pour obtenir une fonction à un seul paramètre: S(a) = 2πa2 + 2πa V

πa2 .

La solution optimale est h = 2a et a = (V/2π)1/3.
Mais une solution alternative est de “libérer” la contrainte. Pour cela on extrémalise la fonction à deux

variables
[S − λV ](a, h)

avec λ un paramètre fixe, dont on calcule la valeur à la fin.
Vérifions:

∂
∂a [S − λV ](a, h) = 4πa+ 2πh− λ 2πah = 0
∂
∂h [S − λV ](a, h) = 2πa− λπa2 = 0 (10.1)

On en déduit λ = 2/a, puis h = 2a, d’où a = (V/2π)1/3.

10.1.2 Justification simple

On veut extrémaliser z = f(x1, x2, . . . , xn) avec la contrainte implicite C(x1, x2, . . . , xn) = 0. Supposons que l’on
peut inverser la contrainte implicite pour écrire xn = φ(x1, x2, . . . , xn−1). On a alors z = f(x1, . . . , xn−1, ϕ(x1, x2, . . . , xn−1)).
À un extremum, les dérivées partielles vérifient

∀i = {1, n− 1} ∂z

∂xi
=

∂f

∂xi
+
∂ϕ

∂xi
× ∂f

∂xn
= 0 (10.2)

97
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dont la solution donne les valeurs des x̃i correspondant à l’extremum recherché. Cela est bien équivalent à
optimiser la fonction

F (x1, x2, . . . , xn) = f(x1, x2, . . . , xn)− λ× (xn − ϕ(x1, ..., xn−1))

où la contrainte xn = φ(x1, x2, . . . , xn−1) est relaxée. On le vérifie simplement: le calcul des dérivées partielles
donne

∀i = {1, n− 1} :
∂F

∂xi
=

∂

∂xi
[f − λ(xn − ϕ(x1, ..., xn−1))] =

∂f

∂xi
+ λ

∂ϕ

∂xi
= 0

et

i = n :
∂F

∂xn
=

∂f

∂xn
− λ = 0

Donc les x̃i correspondant à un extremum vérifient bien l’équation Eq.(10.2).

10.1.3 Interprétation géométrique

Supposons que ~x0 = {x̃1, · · · , x̃n} soit un extrémum recherché de la fonction z = f(x1, x2, . . . , xn) avec la
contrainte implicite C(x1, x2, . . . , xn) = 0.. Alors pour d~x autour de ~x0 on a dz ≡ df = ∂f

∂xi
· xi = 0, soit

~∇f | ~x0
· d~x = 0

Mais par construction dC = 0 le long de la courbe C = 0 et on en déduit

~∇C| ~x0
· d~x = 0

Donc les vecteurs ~∇f et ~∇C sont tous deux perpendiculaires à d~x et on en déduit qu’il existe un coefficient λ
tel que ~∇f = λ~∇C.

10.2 Transformée de Fourier

On considère un champ A(~r), fonction de l’espace (3D) et on définit:

A(~k) =

∫
d3rA(~r) ei

~k·~r (10.3)

A(~r) =

∫
d3k

(2π)3
A(~k) e−i

~k·~r (10.4)

• Transformées usuelles:

Table 10.1: Quelques transformées à 1D

Fonction Fourier transform comment
1 δ(x) cf distributions

δ(x) 1
2π ”

δ(x− a) 1
2π e

ika ”
e−a|x| 2a

k2+a2 a¿0
2a

x2+a2 2πe−|k|a a¿0

e−ax
2 √

π
a e
−k2/(4a) a¿0

cos ax 1
2 (δ(x− a) + δ(x+ a))

sin ax 1
2i (δ(x− a)− δ(x+ a))

1
x iπsign(x)

• Opérateurs vectoriels:

~∇A → −i~kA(~k)

~∇ · ~A → −i~k ·A(~k)

∆A → −k2 ·A(~k)
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Table 10.2: Quelques transformées à 3D

Fonction Fourier transform comment
1

4πr
1
k2

exp(−ar)
4πr

1
k2+a2

• Produit de convolution: On définit un produit de convolution entre deux fonctions par

[f ? g](~r) =

∫
d3r′ f(~r − ~r′)g(~r′) (10.5)

La transformée de Fourier d’un produit de convolution est le produit des transformées de Fourier:∫
d3r′ [f ? g](~r)e−i

~k·~r = f(~k)× g(~k) (10.6)

• Parseval (1D et 3D) ∫
dx |f(x)|2 =

∫
dk

2π
|f(k)|2

∫
d3r |f(~r)|2 =

∫
d3k

(2π)3
|f(~k)|2

(10.7)

• Transformée de Fourier et passage continu-discret:

Pour un système de taille L, périodique, on écrit un développement de A(~r) en série de Fourier:

A(~r) =
1

L3

∑
~k

A~k e
−i~k·~r (10.8)

avec ~k = 2π
L (nx, ny, nz) et A~k =

∫
L3 d

3rA(~r) ei
~k·~r.

Dans la limite des grandes taille L→∞, on écrit alors:

A(~r) =
1

L3

∑
~k

A~k e
−i~k·~r '

∫
d3k

(2π)3
A(~k) e−i

~k·~r (10.9)

On utilise de façon générale l’équivalence

1

(2π)3

∫
d3k←→ 1

L3

∑
~k

(10.10)

pour le passage discret – continu.

10.3 Distributions

Une distribution f est une fonctionnelle qui s’applique à une fonction quelconque ϕ sous la forme

∀ϕ, 〈f, ϕ〉 =

∫ +∞

−∞
dx f(x)ϕ(x) (10.11)

La distribution de Dirac est notée δx0 ou encore δ(x− x0) est telle que 〈δx0 , ϕ〉 = ϕ(x0), ce qui se réecrit∫
dx δ(x− x0)f(x) = f(x0) (10.12)

La distribution de Dirac peut être vue comme une fonction ‘test’ de support (largeur) infiniment petit et de
hauteur infinie, de sorte que son intégrale est égale à 1:∫

dx δ(x− x0) = 1.
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Par exemple c’est la limite d’une gaussienne lorsque la largeur tend vers zero:

lim
σ→0

1√
2πσ

exp

(
−x

2

2σ

)
= δ(x) (10.13)

Propriétés utiles:

• Dilatation

δ(αx) =
1

|α|
δ(x) (10.14)

• Convolution

δ ◦ f(x) = δ(f(x)) =
∑
xi

1

|f ′(xi)|
δ(x− xi) (10.15)

avec xi les zéros de la fonction f(x), ici supposés isolés et à dérivée non-nulle.

• La distribution de Dirac est la dérivée de la fonction de Heavisde δ(x−x0) = H ′(x−x0) avec H la fonction
de Heavisde :

H(x) = 1 x > 0

H(x) = 0 x < 0 (10.16)

• La dérivée d’une distribution quelconque f est définie par∫
dx f ′(x)ϕ(x) = −

∫
dx f(x)ϕ′(x)

et donc ∫
dx δ′(x)ϕ(x) = −

∫
dx δ(x)ϕ′(x) = −ϕ′(0) (10.17)

• Transformée de Fourier de la distribution de Dirac: à une dimension:∫
dx δ(x− x0) ei

~k x = eik x0 (10.18)

ce qui se généralise à toute dimension ∫
d~r δ(~r − ~r0) ei

~k·~r = ei
~k·~r0 (10.19)

10.4 Fonctionelles, dérivées fonctionnelles

Une fonctionnelle est une “fonction de fonction”, elle fait correspondre à une fonction un nombre réel:

A(~r)→ F [A(~r)] (10.20)

• exemples: I[A] =
∫
d3rA(~r),

∫
d3rd3r′A(~r − ~r′)A(~r + ~r′),

∫
d3r (∇A(~r))

2
.

• Si on se place sur un réseau, une fonctionnelle s’interprète comme une fonction de l’ensemble des valeurs
de A en tout point du réseau: F [A(~r)] = F [A1, A2, . . . , An].

δF =
∑
i

∂F
∂Ai

δAi + . . . (10.21)

soit,

δF =

∫
d3r

(
∂F
∂A(~r)

)
δA(~r) + . . . (10.22)

Quelques exemples d’application:

• pour I[A] =
∫
d3rA(~r), on obtient

δI

δA(~r)
= 1 (10.23)
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• de façon identique, pour I[A] =
∫
d3rAn(~r), on obtient

δI

δA(~r)
= nAn−1(~r) (10.24)

• pour F [A] =
∫
d3r 1

2 (~∇A)2,

δF
δA(~r)

= −∆A (10.25)

avec ∆ = ∇2 le laplacien. On peut montrer ce résultat soit par intégration par partie ou discrétisation
sur un réseau.

• Un exemple utile en physique est la dérivée fonctionnelle de l’énergie libre avec un terme en gradient carré
de la densité:

F({ρ(~r)}) =

∫
d3r

1

2
m(~∇ρ)2 + f(ρ)

alors
δF({ρ(~r)})
δρ(~r)

= −m∇2ρ+
df

dρ
(ρ)

10.5 Exemples de résolution d’EDP

10.5.1 Résolution d’une équation de Poisson et fonction de Green

On cherche à résoudre une équation de type

∆G = −δ(~r) (10.26)

C’est une équation universelle que l’on trouve dans de nombreux problèmes en électrostatique, écoulements
hydrodynamiques, équation de diffusion, etc.

Par application de la transformée de Fourier, on obtient

k2G̃(~k) = 1 (10.27)

et G̃(~k) = 1/k2. D’où, par transformée inverse,

G(~r) =

∫
d3k

(2π)3

1

k2
e−i

~k·~r (10.28)

Ce qui donne

G(~r) =
1

4π|~r|
(10.29)

Remarques:
- G est la fonction de Green associée à l’opérateur Laplacien.
- le résultat peut aisément être généralisé à l’équation avec ‘écrantage’

(∆ + κ2)G = −δ(~r) (10.30)

dont la solution en Fourier est G̃(~k) = 1/(k2 + κ2) et l’inversion conduit à

G(~r) =
e−κr

4π|~r|
(10.31)

- La solution pour une distribution quelconque de “charge” ρ0(~r)

∆G = −ρ0(~r) (10.32)

G(~r) =
1

4π

∫
d~r′

ρ0(~r′)

|~r − ~r′|
(10.33)
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10.5.2 Résolution d’une équation de Diffusion

L’équation de diffusion s’écrit
∂c

∂t
= D∆c (10.34)

(avec D le coefficient de diffusion) et on suppose que la condition initiale est c(~r, t = 0) = δ(~r). La transformée
de Fourier spatiale de l’équation de diffusion donne

∂c̃

∂t
(~k, t) = −Dk2c(~k, t) (10.35)

de solution
c̃(~k, t) = c̃(~k, t = 0) e−Dk

2t (10.36)

et pour la condition initiale donnée, c̃(~k, t = 0) = 1. On en déduit par transformée de Fourier inverse que

c(~r, t) =
1

(4πDt)3/2
exp

[
− r2

4Dt

]
(10.37)

La solution de cette équation peut être interprété comme la fonction de Green – ou propagateur – associé à
l’équation de diffusion ci-dessus.

Pour une condition initiale quelconque c(~r, t = 0) = c0(~r), il suffit de remarquer que

c0(~r) =

∫
d~r′ c0(~r′)δ(~r − ~r′) (10.38)

et par linéarité de l’EDP, on en déduit donc que la solution est la superposition des poids c0(~r′), propagés par
la fonction de Green de l’équation Eq.(10.37), de sorte que

c(~r, t) =

∫
d~r′ c0(~r′)× 1

(4πDt)3/2
exp

[
− (~r − ~r′)2

4Dt

]
(10.39)
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Théorie de van der Waals de la transition 
liquide - gaz

ρ représente ρ /ρC
T représente T /TC

f est en unité Pc = 3
8
ρc kB TC

μ est en unité Pc
ρc

= 3
8

kB TC

Energie libre volumique 
f[ρ_, T_] :=

8

3
T ρ Log

ρ

3 - ρ
 - 1 - 3 ρ2

P[ρ_, T_] :=
8

3

ρ T

1 - ρ

3

- 3 ρ2

(*Plot[{f[ρ,5],f[ρ,1],f[ρ,0.1]},{ρ,0,3},

PlotStyle→{RGBColor[1,0,0],RGBColor[0.5,0.8,0.5],

RGBColor[0,0,1]},AxesLabel→{"ρ","f(ρ)"}]*)

(*Plot[{P[ρ,5],P[ρ,1],P[ρ,0.1]},{ρ,0,3},

PlotStyle→{RGBColor[1,0,0],RGBColor[0.5,0.8,0.5],

RGBColor[0,0,1]},TicksStyle→None,

AxesLabel→{"ρ","P"}]*)

Pression et potentiel chimique

P[ρ_, T_] :=
8

3

ρ T

1 - ρ

3

- 3 ρ2

μ[ρ_, T_] :=
f[ρ, T] + P[ρ, T]

ρ

2     VanderWaals.nb

T = 0.7;

ParametricPlot[{P[ρ, T], μ[ρ, T]}, {ρ, 0, 3},

PlotRange → {{-2, 4}, {-10, -3}},

AxesLabel → {"μ", "P"}]

-2 -1 0 1 2 3 4
μ

-9

-8

-7

-6

-5

-4

-3
P
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Bimodale

ρv0 = 0.0001;

ρL0 = 2.9;

Tin = 0.25;

Tfin = 1.;

binroot =

FindRoot[{(μ[ρv, T] ⩵ μ[ρL, T]),

(P[ρv, T] == P[ρL, T])}, {ρv, {ρv0, ρv0 + 0.00005}},

{ρL, {ρL0, ρL0 - 0.005}}, MaxIterations -> 50,

AccuracyGoal -> 11];

ρv1 = First[ρv /. binroot];

ρL1 = First[ρL /. binroot];

4     VanderWaals.nb



ρv0 = 0.0001;

ρL0 = 2.9;

Tin = 0.25;

Tfin = 1.;

nn = 20;

BimodaleV = {};

BimodaleL = {};

Do[T = (Tin + j/nn*(Tfin - Tin));

binroot =

FindRoot[{(μ[ρv, T] ⩵ μ[ρL, T]),

(P[ρv, T] == P[ρL, T])},

{ρv, {ρv0, ρv0 + 0.00005}},

{ρL, {ρL0, ρL0 - 0.005}}, MaxIterations -> 50,

AccuracyGoal -> 11];

ρv1 = First[ρv /. binroot];

ρL1 = First[ρL /. binroot];

Print[T, " ", CForm[ρv1], " ", CForm[ρL1]];

BimodaleV = Append[BimodaleV, {ρv1, T}];

BimodaleL = Append[BimodaleL, {ρL1, T}];

ρv0 = ρv1; ρL0 = ρL1,

{j, 0, nn}];

BimodV = Interpolation[BimodaleV];

BimodL = Interpolation[BimodaleL];

VanderWaals.nb     5

0.25 0.00005125899541706119 2.7583061357378464

0.2875 0.00025624753872846627 2.7179245146584794

0.325 0.0008696978713965782 2.6761648069902737

0.3625 0.002268063182512048 2.6328877234215526

0.4 0.004910889713098212 2.5879374843271177

0.4375 0.009288455165865314 2.541139779437889

0.475 0.01588546651588045 2.4922980969586646

0.5125 0.02516664910024084 2.4411880577329903

0.55 0.03758004533956086 2.3875492814007457

0.5875 0.05357225433669696 2.3310739522766357

0.625 0.0736120792887917 2.2713906104979906

0.6625 0.09822223583914359 2.208040592879236

0.7 0.12802230166578657 2.1404425485057135

0.7375 0.16379088709441406 2.06783654645015

0.775 0.2065637240860893 1.9891910218399123

0.8125 0.2578037865070602 1.9030365801328064

0.85 0.31972996451885616 1.8071403273364057

0.8875 0.3960459485384905 1.6977792593253787

0.925 0.4939195068540769 1.5677626899039274

0.9625 0.6317070512248043 1.3987089566614364

1. 1.008077270390525 1.008077270392827
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TBimod[ρ_] := BimodV[ρ] /; ρ < 1

TBimod[ρ_] := BimodL[ρ] /; ρ > 1

Plot[TBimod[ρ], {ρ, 0.001, 3}]

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0
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Spinodale

Tspin[ρ_] :=
9

4
ρ 1 -

ρ

3

2

Plot[Tspin[ρ], {ρ, 0, 3},

PlotStyle → RGBColor[1, 0, 0],

AxesLabel → {"ρ", "Tspin"}]

0.5 1.0 1.5 2.0 2.5 3.0
ρ

0.2

0.4

0.6

0.8

1.0

Tspin
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Bilan : bimodale et spinodale

Pspin[ρ_] :=
8

3

ρ 9
4
ρ 1 - ρ

3
2

1 - ρ

3

- 3 ρ2

Pbimod[ρ_] :=
8

3

ρ TBimod[ρ]

1 - ρ

3

- 3 ρ2

Plot[{Pspin[ρ], Pbimod[ρ]}, {ρ, 0, 3},

PlotStyle → {Dashed, RGBColor[1, 0, 0]},

PlotRange → {0, 1.2}, Filling → {1 → Axis, 2 → {1}},

AxesLabel → {"ρ", "P"}]

Développement de Landau de l' 
énergie libre

VanderWaals.nb     9

Potentiel chimique au point critique en unité ρC, TC, PC

ρc = 1;

Tc = 1;

Pc = P[ρc, Tc];

μc = μ[ρc, Tc];

Grand potentiel au point critique

ωc = f[ρc, Tc] - μc ρc

C' est - Pc dans le systèmed' unités réduites

δω[μ_, T_, ρ_] := f[ρ, T] - μ ρ - ωc

FullSimplify[Series[δω[μc + Δμ, Tc + ΔT, ρc + ζ],

{ζ, 0, 4}]]

1

3
(-3 Δμ - 8 ΔT (1 + Log[2])) +

1

3
(-3 Δμ + ΔT (4 - 8 Log[2])) ζ +

3 ΔT ζ2 +
3

8
(1 + ΔT) ζ4 + O[ζ]5

ClearAll[T];

Series[f[ρ, T], {ρ, ρc, 4}, {T, 1, 1}]

-
17

3
-
8 Log[2]

3
+ -

8

3
-
8 Log[2]

3
(T - 1) + O[T - 1]2 +

-
14

3
-
8 Log[2]

3
+

4

3
-
8 Log[2]

3
(T - 1) + O[T - 1]2

(ρ - 1) + 3 (T - 1) + O[T - 1]2 (ρ - 1)2 +

3

8
+
3 (T - 1)

8
+ O[T - 1]2 (ρ - 1)4 + O[ρ - 1]5

Energie libre de Landau : analogie magnétique

10     VanderWaals.nb

Energie libre de Landau : analogie magnétique

h[μ_, T_] := μ - μ[ρc, T]

attention ici potentiel chimique calculé à T et non Tc

cf : Δμ -
ΔT
3

(4 - 8 Log[2]) = μ - μ[ρc, T]

avec μ[ρc, T] = -6 + 4 T -
8
3

T (1 + Log[2])

δωLANDAU[h_, T_, ζ_] := -h ζ + 3 (T - 1) ζ 2 +
3

8
T ζ 4

Analogie avec système magnétique :
h = μ - μ[ρc, T] : h joue le rôle d' un champ extérieur

ζ =
ρ - ρc

ρc
joue le rôle du paramètre d' ordre

VanderWaals.nb     11

Plot[{δωLANDAU[0, .5, ϕ], δωLANDAU[2.1, 0.5, ϕ],

δωLANDAU[3, 0.5, ϕ]}, {ϕ, -3, 3}]

-3 -2 -1 1 2 3

-10

-5

5

10
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